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Abstract Aiming at the coupling characteristic between the two groups of electromagnets embed-
ded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is
modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear
mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling
from the input to the output, the model is linearized exactly by means of feedback linearization, and
an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension
controller is designed using state feedback. Simulations and experiments show that the controller
can effectually solve the coupling problem in double-electromagnet suspension system.
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1 Introduction

Electromagnetic suspension (EMS) type low speed maglev train usually adopts modular magnetic

bogie structure. The magnetic bogie is composed of two modules which are connected with two sets

of roll-beams and brace the chassis through air springs. Reference [1] proved that reasonable structure

design can realize mechanical decoupling between the two modules by roll-beams. Therefore, the

suspension control of the maglev train can be simplified as a control problem of the module suspension

system. The module mainly includes a linear motor stator, four suspension electromagnets and a box

girder. The four electromagnets are divided into two groups along the forward direction of the train.

Generally each group of electromagnets is regarded as a single electromagnet, which is independent

of the control degrees of freedom; thus the module suspension system usually is decomposed into two

independent single electromagnet suspension systems to design controllers, respectively.

In fact, the two groups of electromagnets embedded in a module are connected with a rigid body,

and their motion states are coupling. At present the general control method controls the two groups of

electromagnets separately using two independent controllers, and each acts according to the respective

controlled object; the coupling between the two groups of electromagnets is regarded as disturbance

and suppressed by enhancing the robustness of the controller[2∼7] . However, this method can not

actively overcome the coupling question, and the control performance is not desirable when the system

is adjusting due to the disturbance.

In this paper, the module is modeled as a double-electromagnet (DEM) suspension system, and

the method to solve the coupling problem of module suspension system is studied based on a DEM

prototype.

2 System modeling

2.1 Construction of the system

The construction of the DEM suspension system is shown in Fig. 1. It contains two identical

electromagnets that are connected with a rigid bracket. Electromagnet 1 and electromagnet 2 provide

suspension forces for point A and point B, respectively. The suspension object can be regarded as a

rigid body with two electromagnets. The sensors are used to measure suspension states and the poises

are used to exert load forces.

The DEM suspension system can be simplified as shown in Fig. 2. The parameters are defined as

follows: m is the mass of the suspension object, I is the rotation inertia to the geometry center O, F1

and F2 are electromagnetic forces, N1 and N2 are loads that are exerted to each end of the bracket
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respectively, d is the distance from the rail to O, δ1 and δ2 are the distances from the rail to the action

points of F1 and F2, d1 and d2 are the gap values from sensors, l is the distance from O to the action

points of electromagnetic forces, and L is the distances from O to the action point of the load forces.

Fig. 1 Construction of the DEM
suspension system

Fig. 2 Simplified model of the DEM

suspension system

In the range of the model precision permission, some reasonable assumptions are introduced as

follows.

1) The stiffness of the rail is infinite and only the relative motion of the DEM relative to the rail

is considered.

2) The leakage flux and the magnetic field edge effect are neglected, and the magnetic resistances

of the ferrite core and the rail are neglected, i.e., the magnetic potential falls on the air gap evenly.

3) The distribution of the mass of the bracket is even, and the masses of the two magnets are

equal, so the action point of gravity is superposed on the geometry center O.

4) The length of the electromagnet relative to the bracket and the obliquity θ are very small, and

the action point of the electromagnetic force is considered stationary.

5) The action line of the load forces is superposed with the direction of the gap measured.

Under these assumptions, the mathematical model of the DEM suspension system is derived in

the followings.

2.2 Mathematical model

The DEM suspension system is a complex mechanical and electrical system, which contains the

mechanical dynamics of DEM, the relation between the current and the electromagnetic force, and the

relation between the voltage and the current.

1) Mechanical dynamics equation

The DEM system has five degrees of motion freedom, i.e., heave, sway, pitch, roll and yaw[8], as

shown in Fig. 2. For the suspension controller only the motions of heave and pitch should be considered.

The heave motion is the translation at the centroid O and the pitch motion is the rotation round the

centroidal principal axis. The positive directions of the translation and the rotation are downward and

anticlockwise, respectively. According to the translation principle of force and the Newton second law

of motion, the mechanical dynamics equations are given by�
md̈ = −F1 − F2 + N1 + N2 + mg

Iθ̈ = N1L − N2L − F1l + F2l
(1)

From Fig. 2, we have

d = (d1 + d2)/2, θ ≈ (d1 − d2)/2L (2)

Substitution of (2) into (1) gives�
d̈1 = −AK × F1 − BK × F2 + CK × N1 + DK × N2 + g

d̈2 = −BK × F1 − AK × F2 + DK × N1 + CK × N2 + g
(3)

where

AK =
1

m
+

Ll

I
, BK =

1

m
−

Ll

I
, CK =

1

m
+

L2

I
, DK =

1

m
−

L2

I
(4)
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2) Magnetic force equation

The magnetic force between electromagnet and rail can be represented as F = Ki2/δ2, where K is

a characteristic feature constant, δ is the distance between electromagnet and rail, and i is the current

flow in the coil. From Fig. 2, we have�
δ1 = d + θ × l = Pd1 + Qd2

δ2 = d − θ × l = Qd1 + Pd2

(5)

where P = (L + l)/(2L), Q = (L− l)/(2L). So the electromagnetic forces in Fig. 2 can be expressed by8>><>>: F1 = K
i̇21
δ2
1

= K
i21

(Pd1 + Qd2)2

F2 = K
i̇22
δ2
2

= K
i22

(Qd1 + Pd2)2

(6)

3) Electrical dynamics equation

The electrical dynamics of the electromagnetic suspension system can be treated as an inductance-

resistance circuit and formulated as follows

u(t) = Ri +
2Ki̇

δ
−

2Kiδ̇

δ2
(7)

where u(t) is the control voltage of the electromagnet, R is the total resistance of the electrical circuit.

Substituting (5) into (7), we obtain the electrical dynamics equations for the two electromagnets as

follows 8>><>>: u1(t) = Ri1 +
2Ki̇1

Pd1 + Qd2
−

2Ki1(P ḋ1 + Qḋ2)

(Pd1 + Qd2)2

u2(t) = Ri2 +
2Ki̇2

Qd1 + Pd2
−

2Ki2(Qḋ1 + P ḋ2)

(Qd1 + Pd2)

2 (8)

where u1(t) and u2(t) are the control voltages of the two electromagnets, respectively.

On all accounts above, the mathematical model of DEM suspension system in Fig. 1 can be

described by (3), (6), and (8), that is,8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
d̈1 = −AK × F1 − BK × F2 + CK × N1 + DK × N2 + g

d̈2 = −BK × F1 − AK × F2 + DK × N1 + CK × N2 + g

F1 = K
i21
δ2
1

= K
i21

(Pd1 + Qd2)2

F2 = K
i22
δ2
2

= K
i22

(Qd1 + Pd2)2

u1(t) = Ri1 +
2K

Pd1 + Qd2
i̇1 −

2Ki1
(Pd1 + Qd2)2

(P ḋ1 + Qḋ2)

u2(t) = Ri2 +
2K

Qd1 + Pd2
i̇2 −

2Ki2
(Qd1 + Pd2)2

(Qḋ1 + P ḋ2)

(9)

Considering the current flow in the coil can not track the given input value rapidly due to the

inductance of the electromagnet, the idea of cascade control is introduced to design of the suspension

controller[8], and the system is divided into two serial-connected decoupling subsystems: the current

loop subsystem and the position loop subsystem. The current loop is designed as a proportional tache

by current negative feedback. This scheme has been proved feasible in practice. Consequently, we just

consider the design of controller for the position loop.

2.3 State-space equation

Assuming the current loop is rapid enough, and defining the state variable vector as

x = [x1, x2, x3, x4]
T = [d1, ḋ1, d2, ḋ2]

T, we have the following nonlinear state-space model�
ẋ = f (x) + G(x)u

y = h(x)
(10)
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where

f (x) =

2664 x2

CKN1 + DKN2 + g

x4

DKN1 + CKN2 + g

3775 , h(x) =

�
h1(x)

h2(x)

�
=

�
x1

x3

�
G(x) =

�
g1(x)

g2(x)

�T
=

26666666664
0 0

−
AKK

(Px1 + Qx3)2
−

BKK

(Qx1 + Px3)2

0 0

−
BKK

(Px1 + Qx3)2
−

AKK

(Qx1 + Px3)2

37777777775 , u =

�
u1

u2

�
=

�
i21
i22

�
Obviously, the model (10) is a coupling system. For this kind of system, feedback linearization is

usually used to realize the linearization and decoupling from its input to its output, thereby the design

of controller can be simplified.

3 Feedback linearization

For a MIMO affine system[9] 8><>: ẋ = f (x) +

mX
i=1

gi(x)ui

y = h(x)

(11)

given x0 ∈ X, there exist a feedback control u = E
−1(x)[−b(x) + v] and a homeomorphous map

z = Φ(x) in a neighborhood V of x0, such that system (11) can be transformed into a linear decoupling

system in new coordinates of z under the control of u�
ż = Az + Bv

y = Cz
(12)

For the DEM suspension system (10), we validate the linearizable conditions firstly. Since

Lg1
L0

fh1(x) = 0, Lg2
L0

fh1(x) = 0, Lg1
L0

fh2(x) = 0, Lg2
L0

fh2(x) = 0

Lg1
Lfh1(x) = −

AKK

(Px1 + Qx3)2
6= 0, Lg2

Lfh1(x) = −
BKK

(Qx1 + Px3)2
6= 0

Lg1
Lfh2(x) = −

BKK

(Px1 + Qx3)2
6= 0, Lg2

Lfh2(x) = −
AKK

(Qx1 + Px3)2
6= 0

and there exists a matrix

E(x) =

264−
AKK

(Px1 + Qx3)2
−

BKK

(Qx1 + Px3)2

−
BKK

(Px1 + Qx3)2
−

AKK

(Qx1 + Px3)2

375
such that detE(x) 6= 0, i.e., E(x) is not singular, the relative degree of the system is (r1, r2) = (2, 2)

and r = r1 + r2 = 4. Therefore, system (10) is linearizable.

Choosing feedback control law as

u = E
−1(x)[−b(x) + v] (13)

where

E
−1(x) =

1

K(A2
K − B2

K)

�
−(Px1 + Qx3)

2AK (Px1 + Qx3)
2BK

(Qx1 + Px3)
2BK −(Qx1 + Px3)

2AK

�
b(x) = [Lr1

f h1(x) Lr2

f h2(x)]T = [CKN1 + DKN2 + g DKN1 + CKN2 + g]T
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Substitution of (4) into (13) gives

u =

�
u1

u2

�
=

�
(Px1 + Qx3)

2(Kn mN1 + Kn sN2 + Kgg − Kv mv1 + Kv sv2)

(Qx1 + Px3)
2(Kn mN2 + Kn sN1 + Kgg − Kv mv2 + Kv sv1)

�
(14)

where

Kn m =
l + L

2KL
, Kn s =

l − L

2Kl
, Kg =

m

2K
, Kv m =

I + mLl

4KLl
, kv s =

I − mLl

4KLl
The homeomorphous map z = Φ(x)

z = [h1(x) Lfh1(x) h2(x) Lfh2(x)]T = [x1 x2 x3 x4]
T (15)

Accordingly, in these new coordinates the state-space equations of system (10) become�
ż = Az + Bv

y = Cz
(16)

where

A =

2664 0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

3775 , B =

2664 0 0

1 0

0 0

0 1

3775 , C =

�
1 0 0 0

0 0 1 0

�
The transfer function matrix of the system is given by

G(s) =

24 1

s2
0

0
1

s2

35 (17)

The original system becomes a typical integral type decoupling system after feedback linearization.

The state variables of the two subsystems are gap, and velocity and current; there is no coupling between

the two groups of state variables, namely we realize the electrical decoupling for the original system.

We can accomplish the design of the controller for the DEM suspension system by designing the control

law v for decoupling system (16).

4 Nonlinear controller design and analysis

4.1 Controller design

The controllability matrix of system (16) is

M =

2664 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

3775
Since rank(M) = 4, system (16) is completely controllable. So that we can design the controller by

means of pole placement. As system (16) is a decoupling system, controllers v1 and v2 can be designed,

respectively. Without loss of generality, we take v1 as an example to explain the design of controller.

By means of state feedback and input transform, the control law is given by

v1 = R1vc1 − k1y1 (18)

where y1 = [z1 z2]
T, k1 = [k11 k12] is the gain vector of state feedback, R1 is the coefficient of the

input transform, and vc1 is the given gap value. According to the desired dynamic response of the close

loop system, we choose the desired poles as λ1,2 = −35.35 ± j35.35. By means of pole placement, we

obtain the gains of feedback k11 = 2500, k12 = 70.7. Then the close loop transfer function is given by

GL(s) =
R1

s2 + 70.7s + 2500
(19)

Generally, we desire the steady error to satisfy ep = 0, i.e., the steady gain is 1

lim
s→0

GL(s) = 1 ⇒ lim
s→0

R1

s2 + 70.7s + 2500
= 1 ⇒ R1 = 2500



326 ACTA AUTOMATICA SINICA Vol. 32

Therefore

v1 = R1vc1 − k1y1 = 2500vc1 − 2500z1 − 70.7z2 = 2500(vc1 − d1) − 70.7ḋ1 (20)

Similarly, v2 is given by

v2 = 2500(vc2 − d2) − 70.7ḋ2 (21)

From equation (14), we can obtain the control laws for currents as follows

i =

�
i1
i2

�
=

24 (Px1 + Qx3)
p

(Kn mN1 + Kn sN2 + Kgg − Kv mv1 + Kv sv2)

(Qx1 + Px3)
p

(Kn mN2 + Kn sN1 + Kgg − Kv mv2 + Kv sv1)

35 (22)

and the structure of close loop system is shown in Fig. 3, where U1 and U2 are defined in (22).

Fig. 3 The close loop system

4.2 System analysis

Substitution of (22) into (6) gives�
F1 = K(Kn mN1 + Kn sN2 + Kgg − Kv mv1 + Kv sv2)

F2 = K(Kn mN2 + Kn sN1 + Kgg − Kv mv2 + Kv sv1)
(23)

Then (3) can be rewritten as �
d̈1 = v1

d̈2 = v2

(24)

The result above is obtained under the assumption without disturbance. The load forces have

been modeled in the mathematical model, so the relations between input and output do not include N1

and N2, that is to say, N1 and N2 will not affect the external characteristics of the close loop system.

Let ∆N1 and ∆N2 denote the disturbance forces due to change of load or external disturbance which

are unmodeled; then the relations from input to output are given by

d̈1 = CK × ∆N1 + DK × ∆N2 + v1

d̈2 = DK × ∆N1 + CK × ∆N2 + v2 (25)

In order to reject the external disturbance force, we can take the following measures:

1) Measure the disturbance forces using force sensors and introduce them into the model.

2) Introduce integral tache into the controller to reject the change of load.

5 Simulation and experiment

5.1 Simulation and analysis

The simulation model is built in Simulink, and the physical parameters of the model are the same

as the prototype shown in Table 1. δ0 is the given gap value.
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Table 1 Parameters used in simulation

S (m2) L (m) l (m) m (Kg) I (Kg×m2) N N1 (N) N2 (N) δ0 (m)

0.0015 0.3 0.168 14.852 0.5648 663 36.5 36.5 0.005

To verify the performance of the proposed decoupling controller, we design a PID controller based

on the single electromagnet as the referenced object (the referenced controller for short). The simulation

results are shown in Fig. 4. The results of the referenced controller are shown in dashed line and the

results of the decoupling controller is shown in real line.

1) The performance of load disturbance rejection. Assume that the DEM suspension system is

in the steady state. At the 3rd second a load disturbance is exerted on point B. The gap response is

shown in Fig. 4(a). It is obvious that the performance of load disturbance rejection of the decoupling

controller is much better than that of the referenced controller. The decoupling controller takes the

loads of the two points as dynamic parameters and takes them into account in the controller structure,

so each point can not only reject the load disturbance of its own but also reject the coupling due to the

load disturbance of the other point. In practice because of the delay of control and delay characteristic

of the current loop, the gap values of the two points need an adjusting process to revert to the given

gap value after load disturbance.

(a) Response to load disturbance (b) Response to gap disturbance

Fig. 4 Simulation results

2) Performance of gap disturbance rejection. Assume that the DEM suspension system is in the

steady state. At the 2nd second, a square wave with period of 5s and amplitude of 0.002m is added to

the gap value of point A. The gap response is shown in Fig. 4(b). It can be seen that the performance

of gap disturbance rejection of the decoupling controller is much better than that of the referenced

controller. In the ideal condition the state of one point will not be influenced when the state of the

other point is disturbed if the DEM suspension system is controlled by the decoupling controller.

The simulation results show that the nonlinear decoupling control system can realize the electrical

decoupling for the DEM suspension system.

5.2 Experiment and analysis

The controller is realized in a digital circuit based on ADSP21061. The experiment results are

shown in Fig. 5. Curve 1 is the gap response of the system controlled by the decoupling controller

and curve 2 is the gap response of the system controlled by the referenced controller. Fig. 5(a) is the

response to load disturbance. When the DEM suspension system is in steady state, a poise is added to

one point, and the gap response of the other point is shown. Fig. 5(b) is the response to gap disturbance.

A square wave signal with a certain period and amplitude is added to the signal from the sensor of one

point, and the gap of the other point is shown.

The experimental results are similar to the simulation results and it is shown that the performances

of decoupling controller are much better then those of the referenced controller.
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(a) Response to load disturbance coupling (b) Response to gap disturbance coupling

Fig. 5 Experiment results

6 Conclusions

In the present paper, we propose a nonlinear decoupling controller to solve the coupling problem

between two groups of electromagnets inside of a module of the maglev train. The module is sim-

plified as a DEM suspension system. The design procedure is carried out with feedback linearization

and state feedback. The performances of load and gap disturbance rejection are tested in simulation

and experiment. The results show that the proposed control method can solve the coupling problem

efficiently.
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