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Abstract The problem of adaptive robust control is addressed for a class of neutral delay systems.

All uncertainties are assumed to be bounded by unknown constants. An improved adaptation law

is proposed to estimate the square of these unknown bounds. Then, by making use of the updated

values of the squared unknown bounds, an adaptive controller is designed to make the solution of

the resultant closed-loop system uniformly ultimately bounded. Furthermore, this method avoids

chattering and improves the performance. An example is given to illustrate the effectiveness of this

method.
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1 Introduction

Because neutral delay systems are of both theoretical and practical interest, in recent years, consid-

erable attention has been focused on them, especially on stability analysis and controller synthesis[1∼4].

On the other hand, in the control literature, the information of the upper bounds of uncertainties is

usually assumed to be known. However, it is generally difficult to obtain such prior knowledge in prac-

tice because of the complexity of the structures of uncertainties. An effective way to deal with this

problem is to introduce adaptive control law to estimate the bounds of uncertainties. Many forms of

adaptive control schemes are available in the literature for uncertain systems without delay or with

general non-neutral delay, see [5∼7]. But for neutral delay systems, no results except our previous

work[8] have been reported. In [8], by making use of the method of 1-norm of matrix, an adaptive

controller was designed to make the solution of the resultant closed-loop system uniformly ultimately

bounded. However, the use of the sign function in constructing the adaptive controller caused serious

chattering and deteriorated the performance.

This paper presents an improved adaptive robust control law to fix this problem. The adaptive

controller involving the estimate of the square of these unknown bounds makes the solution of the

resultant closed-loop system uniformly ultimately bounded and can overcome some drawbacks of the

method in [8]. Finally, simulation results are given to illustrate the effectiveness of the method.

2 System description and problem formulation

Consider the nonlinear uncertain neutral delay system which appeared in [8]:

ẋ(t) = (A + ∆A)x(t) + (Ah + ∆Ah)x(t − h) + Adẋ(t − d) + e(t,x, x(t − h)) + Bu(t) (1a)

x(θ) = ϕ(θ), θ ∈ [−τ, 0] (1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, e(t,x, x(t − h)) ∈ Rn is the

nonlinear uncertainty, A,Ah, Ad are all known constant matrices with appropriate dimensions. ∆A and

∆Ah denote the unknown real-valued functions representing the time-varying parameter uncertainties

of the matrices A and Ah, respectively. Scalars h > 0 and d > 0 denote the state delays. Let

τ = max{h, d}. ϕ(θ) ∈ Rn is a continuously differentiable vector-valued initial function on [−τ, 0].

We also need the following standard assumptions.
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A1) The pair (A,B) is controllable.

A2) ∆A,∆Ah and e(t,x, x(t−h)) are all continuously differentiable with respect to x, and piece-

wisely continuous in t[6].

A3) There exist unknown continuous functions matrices A1, A2, A3 with appropriate dimensions,

such that ∆A = BA1, ∆Ah = BA2, e(t,x, x(t − h)) = BA
[9,10]
3 .

A4) There exist unknown positive scalars g1 and g2 such that ‖A1x + A2x(t − h) + A3‖ 6

g1‖x‖ + g2‖x(t − h)‖.

Let f = A1x + A2x(t − h) + A3. System (1) can be rewritten as

ẋ(t) = Ax(t) + Ahx(t − h) + Adẋ(t − d) + Bu(t) + Bf (2a)

x(θ) = ϕ(θ), θ ∈ [−τ, 0] (2b)

3 Main result

Now, under Assumptions A1)∼A4), we give the adaptive design scheme.

Let γ = g2
1 , θ = g2

2 , and design the adaptive law by

dθ̂

dt
= −αα2θ̂ +

1

2
αα

−1
1 ‖℘T

PB‖2
,

dγ̂

dt
= −δδ2γ̂ +

1

2
δδ

−1
1 ‖℘T

PB‖2 (3a)

where α, α2, δ and δ2 are given positive constants, α1 and δ1 are positive constants to be chosen later.

Let

uadp = −
1

2
(δ−1

1 γ̂ + α
−1
1 θ̂)BT

P℘ (3b)

u = −µB
T
Px + uadp (3c)

where ℘ is the difference operator defined as ℘(x(t)) = x(t) − Adx(t − d), P is a positive matrix and

will be chosen, µ is a given positive constant.

Define γ̃ = γ̂ − γ, θ̃ = θ̂ − θ. Thus, ˙̃γ = ˙̂γ,
˙̃
θ =

˙̂
θ. For convenience, we adopt the notations

xh = x(t − h), xd = x(t − d), ℘ = ℘(x(t)), f = f(t, x(t), x(t − h))

and we refer to this method as 2-norm method in order to differentiate it from 1-norm method proposed

in [8]. Now, we give the main result of this paper.

Theorem 1. Consider the neutral delay system (2) with Assumptions A1)∼A4). If there exist

matrices P > 0, Q > 0, S > 0, positive constants α, δ1 such that the matrix inequality

E =

0�PA + ATP − 2µPBBTP + W PAh (PA − µPBBTP + W )Ad

∗ −S 0

∗ ∗ −Q + AT
d WAd

1A < 0 (4)

holds, where W = S + Q + δ1I + α1I , then the solutions to closed-loop system (2)∼(3) are uniformly

ultimately bounded for any delays h and d.

Proof. It is easy to show from (4) that −Q + AT
d WAd < 0. Therefore, AT

d QAd − Q < 0. Thus

the operator ℘ is stable.

Let Ā = A − µBBTP . Consider the following Lyapunov-Krasovskii candidate function:

V (xt, γ̃, θ̃) = ℘
T(x(t))P℘(x(t)) +

Z 0

−h

x
T(t + θ)(S + α1I)x(t + θ)dθ+Z 0

−d

x
T(t + θ)Qx(t + θ)ds + α

−1
θ̃
2 + δ

−1
γ̃

2

Taking the derivative of V (xt, γ̃, θ̃) along the solutions of (2) and (3) results in

V̇ (xt, γ̃,θ̃) = 2℘
T
P ℘̇ + x

T(S + α1I)x − x
T
h (S + α1I)xh + x

T
Qx − x

T
d Qxd + 2(α−1

θ̃
˙̃
θ + δ

−1
γ̃ ˙̃γ) 6
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2℘
T
P (Āx + Ahxh) + 2℘

T
PB[−

1

2
(δ−1

1 γ̂ + α
−1
1 θ̂)BT

P℘] + 2℘
T
PBf + x

T(S + α1I + Q)x−

x
T
h (S + α1I)xh − x

T
d Qxd + 2α

−1
θ̃[−αα2θ̂ +

1

2
αα

−1
1 ‖℘T

PB‖2]+

2δ
−1

γ̃[−δδ2γ̂ +
1

2
δδ

−1
1 ‖℘T

PB‖2] 6 2℘
T
P (Āx + Ahxh) + x

T(S + α1I + Q)x−

x
T
h (S + α1I)xh − x

T
d Qxd − α

−1
1 θ̂‖℘T

PB‖2 − δ
−1
1 γ̂‖℘T

PB‖2 − 2α2θ̃θ̂+

α
−1
1 θ̃‖℘T

PB‖2 − 2δ2γ̃γ̂ + δ
−1
1 γ̃‖℘T

PB‖2 + 2℘
T
PBf (5)

Notice that

2℘
T
PBf 62‖℘T

PB‖‖f‖ 6 2‖℘T
PB‖(g1‖x‖ + g2‖xh‖) 6

δ
−1
1 γ‖℘T

PB‖2 + δ1‖x‖
2 + α

−1
1 θ‖℘T

PB‖2 + α1‖xh‖
2 (6)

Applying (6) to (5) yields

V̇ (xt, γ̃,θ̃) 6 2℘
T
P (Āx + Ahxh) + x

T
Wx − x

T
h Sxh − x

T
d Qxd − 2α2θ̃θ̂ − 2δ2γ̃γ̂ =

2℘
T
P [Ā(℘ + Adxd) + Ahxh] + (℘ + Adxd)TW (℘ + Adxd) − x

T
h Sxh − x

T
d Qxd−

2α2 θ̃(θ̃ + θ) − 2δ2γ̃(γ̃ + γ) 6 ℘
T(x(t))(PĀ + Ā

T
P + W )℘(x(t))+

2℘
T(x(t))(W + PĀ)Adxd + x

T
d (−Q + A

T
d WAd)xd − x

T
h Sxh + 2℘

T
PAhxh − δ2γ̃

2−

α2θ̃
2 + δ2γ

2 + α2θ
2

6 ζĒζ
T + δ2γ

2 + α2θ
2 (7)

where ζ = (℘T xT
h xT

d γ̃ θ̃), Ē = diag(E − δ2 − α2).

From (4), we know Ē < 0. Noting the stability of the operator ℘ and (7), we complete the proof

by using Theorem 8.1 in [4]. �

Remark 1. In [8], the designed adaptive controller contains the sign function because the method

of 1-norm is used. The application of such controller may give rise to undesirable chattering problem.

A common method to overcome this drawback caused by the sign function in the literature is to exploit

the saturation function or other similar function to replace the sign function[6,10]. But the use of such

function reduces the tracking accuracy, and thus produces unsatisfactory performance. The application

of the 2-norm method in this paper avoids these disadvantages, as shown in the proof of Theorem 1.

Remark 2. The information about the constant delays h and d must be known in order to design

the adaptive controller by using 1-norm method, while for 2-norm method, from (3a), we can see that

the constant delay h is not required to be known.

Remark 3. Noting the inequality −PBBTP 6 NBBTNT − NBBTP − PBBTNT, where N is

an arbitrarily given matrix, we can easily turn (4) into an LMI.

Remark 4. If in Assumption A4), g1 = g2 = g, then by letting η = g2, we can construct adaptive

control law u = −µBTPx +uadp, where uadp = −β−1
1 η̂BTP℘,

dη̂

dt
= −ββ2η̂ +

1

2
ββ

−1
1 ‖℘T

PB‖2, β and

β2 are given positive constants, β1 is a positive constant to be chosen, and ℘, P and µ are defined as

before.

4 Simulation

Consider the system (1) with parameters as follows:

A =

�
−1 1

−2 −3

�
, ∆A =

�
0.1 sin(2t) −0.3 sin(t)

−0.1 sin(t) 0.075 sin(3t)

�
, Ad =

�
−0.5 −0.27

0.1 0

�
, Ah =

�
0 −0.1

0.5 1

�
∆Ah =

�
−0.2 sin(2t) 0.1 sin(3t)

0.1 sin(t) −0.175 sin(t)

�
, e(t,x, xh) =

�
0.6 sin(3t)

0.9 sin(3t)

�
, B =

�
1 0

0 0.5

�
When Ad = 0, the system (1) reduces to the similar system discussed in [6], which is a water-quality

dynamic model of the River Nile. It is easy to verify that Assumptions A1)∼A3) are all satisfied.

According to Remark 3, taking µ = 1, N = I and solving (4) leads to

P =

�
7.9252 0.5572

0.5572 4.1459

�
, S =

�
4.6107 0.2186

0.2186 5.4786

�
, Q =

�
9.3346 2.2107

2.2107 6.2790

�
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α1 = 4.0329, δ1 = 4.0339, α = δ = 0.2, α2 = δ2 = 5

Let h = 1 and d = 2; the adaptive law is then given by

dθ̃

dt
= −θ̂ +

1

2
×

0.2

4.0329
‖℘T

PB‖2
,

dγ̃

dt
= −γ̂ +

1

2
×

0.2

4.0339
‖℘T

PB‖2

Therefore

u = −
µ

2
B

T
Px −

1

2
(δ−1

γ̂ + α
−1
1 θ̂)BT

P℘ (8)

We take the initial value as x(0) = (5 − 4)T and γ̂(0) = θ̂(0) = 2, the simulation results are

shown in Figs. 1∼2. Fig. 1 shows that the original system states approach to a small bounded region in

a finite time. Fig. 2 depicts the input control signals.

Based on the 1-norm method in [8], the simulation results are shown in Figs. 3∼4. From Fig. 2

and Fig. 4, we can see that the chattering phenomenon is eliminated by using 2-norm method.

Fig. 1 The state responses (2-norm method) Fig. 2 Control law (2-norm method)

Fig. 3 The state responses (1-norm method) Fig. 4 Control law (1-norm method)

5 Conclusion

In this paper, an improved robust adaptive method is given for a class of neutral delay systems.

The so-called 2-norm adaptive controller makes the resultant closed-loop system ultimately uniformly

bounded, and provides better performance than the 1-norm method. Moreover, this adaptive controller

avoids the use of sign function which may cause a serious chattering problem as in the 1-norm method.
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