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Abstract Based on the optimal fusion algorithm weighted by matrices in the linear minimum
variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for
discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a high-
dimension matrix to compute matrix weights. To reduce the computational burden, a distributed
reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of
two relatively low-dimension matrices to compute matrix weights. A simulation example shows the
effectiveness.
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1 Introduction

Recently, state estimation for stochastic singular systems has attracted considerable attention due
to extensive application backgrounds including robotics, economics, chemical systems, etc[1∼5]. When
multiple sensors measure the state of a stochastic singular system, we can combine all measurement
vectors from different sensors into one measurement vector, and then we can obtain the centralized filter.
But the centralized filter can bring large computational burden in the fusion center. In recent years, the
distributed filters have been widely investigated due to the parallel structures to increase the input data
rates and reliability[6∼14] , including the fusion filter of two sensors[6], the distributed parallel filter with
feedback[7], the federal Kalman filter[8], the optimal fusion filter in the maximum likelihood (ML) sense
under the assumption of the normal distribution[9,10], the suboptimal fusion steady-state Kalman filter
under the assumption of local estimation errors to be uncorrelated[11], the unified fusion rules based
on a unified linear model for centralized, distributed, and hybrid fusion architectures in weighted least
square (WLS) and best linear unbiased estimation (BLUE) sense[12], the measurement fusion filter with
the same dimension measurement matrices[13] and the optimal fusion weighted by matrices in the LMV
sense[14], which is equivalent to the ML fusion[9] and the standard distributed BLUE fusion[12]. The
above results about fusion estimation are mainly focused on nonsingular systems. But the distributed
fusion estimation problem for stochastic singular systems is seldom reported, however, it has a widely
application background.

In this paper, we present a distributed full-order optimal fusion Kalman filter (DFFKF) for sto-
chastic singular system based on the optimal fusion algorithm weighted by matrices in the LMV sense,
which involves the inverse of a high-dimension matrix to compute matrix weights. To reduce the com-
putational burden, we also present a distributed reduced-order optimal fusion Kalman filter (DRFKF),
which involves the inverses of two low-dimension matrices.

2 Problem formulation

Consider the discrete-time stochastic singular linear system with multiple sensors

Mx(t + 1) = Φx(t) + Γw(t) (1)

y
(i)(t) = H

(i)
x(t) + v

(i)(t), i = 1, 2, · · · , l (2)

where the state x(t) ∈ Rn, the measurements y
(i)(t) ∈ Rm(i) , i = 1, 2, · · · , l. w(t) ∈ Rr and

v
(i)(t) ∈ Rm(i) , i = 1, 2, · · · , l are independent white noises with zero mean and variances Qw and

Qv(i) . M,Φ,Γ , H(i) are the constant matrices with compatible dimensions, l is the number of sensors,
and the superscript (i) denotes the ith sensor.
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Assumption 1. M is a singular square matrix, rankM = n1 < n, rankΦ > n2 and n1 + n2 = n.
Assumption 2. System (1) is regular, i.e., det(zM − Φ) 6≡ 0 where z is an arbitrary complex.
Assumption 3. The initial state x(0) with mean µ0 and variance P0 is independent of w(t) and

v
(i)(t), i = 1, 2, · · · , l.

Our aim is to find the distributed reduced-order fusion Kalman filter x̂
(o)(t|t) of the state x(t)

based on measurements (y(i)(t), · · · , y(i)(1)), i = 1, 2, · · · , l.
For system (1) and (2), there are nonsingular matrices L and R[15], such that

LMR =

�
M1 0
M2 0

�
, LΦR =

�
Φ1 0
Φ2 Φ3

�
, LΓ =

�
Γ1

Γ2

�
, H

(i)
R = [H

(i)
1 H

(i)
2 ] (3)

where M1 ∈ Rn1×n1 is nonsingular lower-triangular, Φ1 ∈ Rn1×n1 is quasi-lower-triangular, Φ3 ∈
Rn2×n2 is nonsingular lower-triangular. By introducing the transformation x(t) = R[xT

1 (t) x
T
2 (t)]T

with x1(t) ∈ Rn1 and x2(t) ∈ Rn2 , where T denotes the transpose, the singular system (1) and (2) is
transferred into the following two reduced-order subsystems:�

x1(t + 1) = Φ0x1(t) + Γ0w(t)

y
(i)(t) = H̄(i)

x1(t) + η
(i)(t)

, i = 1, 2, · · · , l (4)

x2(t) = Bx1(t) + Cw(t) (5)

where Φ0 = M−1
1 Φ1, Γ0 = M−1

1 Γ1, H̄(i) = H
(i)
1 + H

(i)
2 B, η(i)(t) = Γ

(i)
3 w(t) + v(i)(t), Γ

(i)
3 = H

(i)
2 C,

B = Φ
−1
3 M2M

−1
1 Φ1 − Φ

−1
3 Φ2, C = Φ

−1
3 M2M

−1
1 Γ1 − Φ

−1
3 Γ2. Also we have

E

��
w(t)

η
(i)(t)

�
[wT(k) η

(j)T(k)]

�
= Q

(ij)
δtk, Q

(ij) =

�
Qw S(j)

S(i)T Qη(ij)

�
(6)

where S(i) = QwΓ
(i)T

3 , Qη(ii) = Qη(i) = Γ
(i)
3 QwΓ

(i)T

3 + Qv(i) and Qη(ij) = Γ
(i)
3 QwΓ

(j)T

3 , i 6= j. E is the
expectation, and δtk is the Kronecker delta function.

3 Distributed fusion filters

For every sensor subsystem of system (4) with multiple sensors, from [16] we can obtain the local

Kalman filter x̂
(i)
1 (t|t) for the reduced-order state x1(t), the filtering gain K(i)(t), the filtering error

covariance P
(i)
1 (t|t), innovation ε

(i)(t) with covariance Qε(i)(t) and the white noise filter ŵ(t|t). So,
from (5) we have the filter of the reduced-order state x2(t) as

x̂
(i)
2 (t|t) = Bx̂

(i)
1 (t|t) + Cŵ

(i)(t|t) (7)

3.1 Computation of cross covariance

From (4)∼(7) and [16], we can obtain the prediction and filtering error equations as follows:

x̃
(i)
1 (t + 1|t) = Φ̄

(i)
0 [In1 − K

(i)(t)H̄(i)]x̃
(i)
1 (t|t − 1) + Γ0w(t) − (Φ̄

(i)
0 K

(i)(t) + J
(i))η(i)(t) (8)

x̃
(i)
1 (t|t) = [In1 − K

(i)(t)H̄(i)]x̃
(i)
1 (t|t − 1) − K

(i)(t)η(i)(t) (9)

x̃
(i)
2 (t|t) = F

(i)(t)x̃
(i)
1 (t|t − 1) + D

(i)(t)[wT(t),η(i)T(t)]T (10)

where x̃
(i)
1 (t|t − 1) = x1(t) − x̂

(i)
1 (t|t − 1), x̃

(i)
1 (t|t) = x1(t) − x̂

(i)
1 (t|t), x̃

(i)
2 (t|t) = x2(t) − x̂

(i)
2 (t|t),

Φ̄
(i)
0 = Φ0 − J(i)H̄(i), J(i) = Γ0S

(i)Q−1

η(i) , F (i)(t) = B(In1 − K(i)(t)H̄(i)) − CS(i)Q−1

ε(i)(t)H̄
(i) and

D(i)(t) = [C,−BK(i)(t) − CS(i)Q−1

ε(i)(t)]. In1 is an n1 × n1 identity matrix. Using (8)∼(10) and

projection theory[16], we easily obtain the following Lemmas 1 and 2.
Lemma 1. For system (4) with multiple sensors, the cross-covariance matrices of prediction and

filtering errors for state x1(t) between the ith and the jth sensor subsystems are given by

P
(ij)
1 (t + 1|t) = Φ̄

(i)
0 [In1 − K

(i)(t)H̄(i)]P
(ij)
1 (t|t − 1)[In1 − K

(j)(t)H̄(j)]TΦ̄
(j)T

0 +

[Γ0,−Φ̄
(i)
0 K

(i)(t) − J
(i)]Q(ij)[Γ0,−Φ̄

(j)
0 K

(j)(t) − J
(j)]T (11)

P
(ij)
1 (t|t) = [In1 − K

(i)(t)H̄(i)]P
(ij)
1 (t|t − 1)[In1 − K

(j)(t)H̄(j)]T + K
(i)(t)Qη(ij)K

(j)T (t)
(12)
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with the initial value P
(ij)
1 (0| − 1) = P01 where P01 is the first n1 × n1 block of R−1P0R

−T.
Lemma 2. For system (5) with multiple sensors, the covariance matrix of the filtering errors for

state x2(t) between the ith and the jth sensor subsystems is given by

P
(ij)
2 (t|t) = F

(i)(t)P
(ij)
1 (t|t − 1)F (j)T(t) + D

(i)(t)Q(ij)
D

(j)T (t) (13)

where P
(ii)
2 (t|t) is the filtering error variance of x2(t) based on the ith sensor, i.e., P

(i)
2 (t|t).

3.2 Full-order fusion filter

Theorem 1. For singular system (1) and (2) with multiple sensors, we have the distributed
full-order optimal fusion filter

x̂
o(t|t) =

lX
i=1

Ā
(i)(t)x̂(i)(t|t) (14)

The optimal matrix weights Ā(i)(t), i = 1, 2, · · · , l are computed by

Ā(t) = Σ−1(t)e(eTΣ−1(t)e)−1 (15)

where Ā(t) = [Ā(1)(t), · · · , Ā(l)(t)]T and e = [In · · · In]T are both nl×n matrices. Σ(t) = (P (ij)(t|t))nl×nl

is an nl × nl matrix. Covariance matrix P (ij)(t|t) between x̃
(i)(t|t) and x̃

(j)(t|t) is computed by

P
(ij)(t|t) = R

�
P

(ij)
1 (t|t) P

(ij)
12 (t|t)

P
(ij)
21 (t|t) P

(ij)
2 (t|t)

�
R

T (16)

where the correlated matrix P
(ij)
12 (t|t) between x̃

(i)
1 (t|t) and x̃

(j)
2 (t|t) is computed by

P
(ij)
12 (t|t) = (In1 − K

(i)(t)H̄(i))P
(ij)
1 (t|t − 1)F (j)T(t) + [0,−K

(i)(t)]Q(ij)
D

(j)T (t) (17)

with P
(ij)
12 (t|t) = P

(ji)T

21 (t|t). x̂
(i)(t|t) is computed by

x̂
(i)(t|t) = R[x̂

(i)T

1 (t|t), x̂
(i)T

2 (t|t)]T (18)

and the variance matrix of the optimal fusion filter x̂
o(t|t) is computed by

P
o(t|t) = (eTΣ−1(t)e)−1 (19)

and we have P o(t|t) 6 P (i)(t|t), i = 1, 2, · · · , l.
Proof. Taking projection on x(t) = R[xT

1 (t) x
T
2 (t)]T gives (18). We have the filtering error

x̃
(i)(t|t) = R[x̃

(i)T

1 (t|t), x̃
(i)T

2 (t|t)]T (20)

From (20) we have the covariance matrix of the filtering errors as (16). Using (9) and (10) gives (17).
Using the optimal fusion algorithm[14] , we have (14), (15), and (19). �

3.3 Reduced-order fusion filters

Theorem 1 gives a distributed full-order optimal fusion Kalman filter (DFFKF). It requires the
inverse of an nl × nl high-dimension matrix Σ(t). To reduce the computational burden, we will give a
distributed reduced-order fusion Kalman filter (DRFKF).

Theorem 2. For two reduced-order subsystems (4) and (5) with multiple sensors, we have the
reduced-order optimal fusion filters

x̂
(o)
k (t|t) = (eT

k Σ−1
k (t)ek)−1

e
T
k Σ−1

k (t)[x̂
(1)T

k (t|t), x̂
(2)T

k (t|t), · · · , x̂
(l)T

k (t|t)]T, k = 1, 2 (21)

where ek = [Ink
, · · · , Ink

]T is an nkl × nk matrix. Σk(t) = (P
(ij)
k (t|t))nkl×nkl, i, j = 1, 2, · · · , l is an

nkl × nkl positive definite matrix. Variances of x̂
(o)
k (t|t), k = 1, 2 are given by

P
(o)
k (t|t) = (eT

k Σ−1
k (t)ek)−1

, k = 1, 2 (22)

and we have P
(o)
k (t|t) 6 P

(i)
k (t|t), i = 1, 2, · · · , l; k = 1, 2.

Proof. These follow from the optimal fusion algorithm in [14]. �
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Theorem 3. For singular system (1) and (2) with multiple sensors, we have the fusion filter

x̂
(o)(t|t) = R[x̂

(o)T

1 (t|t) x̂
(o)T

2 (t|t)]T (23)

The variance of the filtering error of x̂
(o)(t|t) is computed by

P
(o)(t|t) = R

�
P

(o)
1 (t|t) P

(o)
12 (t|t)

P
(o)
21 (t|t) P

(o)
2 (t|t)

�
R

T (24)

where P
(ij)
1 (t|t) and P

(ij)
2 (t|t) are computed by Lemmas 1 and 2. Correlated matrix P

(o)
12 (t|t) between

filtering errors x̃
(o)
1 (t|t) and x̃

(o)
2 (t|t) is computed by

P
(o)
12 (t|t) = P

(o)
1 (t|t)eT

1 Σ−1
1 (t)Σ12(t)Σ

−1
2 (t)e2P

(o)
2 (t|t) (25)

where P
(o)
12 (t|t) = P

(o)T

21 (t|t) and Σ12(t) = (P
(ij)
12 (t|t))n1l×n2l. P

(ij)
12 (t|t) is computed by (17).

Proof. (23) and (24) can be obtained easily. Using (21) gives (25). �

So far, we have given the DFFKF by Theorem 1 and DRFKF by Theorems 2 and 3. We have the
results that the precision of DFFKF is higher than that of DRFKF, however, DRFKF can reduce the
computation burden since it only requires in parallel the inverses of two nkl × nkl, k = 1, 2 relatively
low-dimension matrices with n = n1 + n2 to compute the weights.

4 Simulation example

For simplification, we consider a stochastic singular system with three sensors as in (3) where

M1 =

�
−2.13 0

1 0.5

�
, M2 =

�
1 0.5
0 −1

�
, Φ1 =

�
−1 0.2
−0.5 0

�
, Φ2 =

�
1 −0.5
0 −1

�
, Φ3 =

�
−0.5 0
−1 2

�
,

Γ1 =

�
0.5 0
0 0.8

�T
, Γ2 =

�
0.8 0
0 −0.6

�T
, H

(1)
1 =

�
1 0.5
0 1

�
, H

(1)
2 =

�
1 0
0 1

�
, H

(2)
1 =

�
1 0
0 0.8

�
, H

(2)
2 =�

0 1
1 0

�
, H

(3)
1 =

�
0.1 0.6
1 0.1

�
, H

(3)
2 =

�
1 1
0 1

�
, Qw = I2, Qv(1) = 8I2, Qv(2) = 12I2 and Qv(3) = 15I2.

States x1(t) = [x11(t) x12(t)]
T and x2(t) = [x21(t) x22(t)]

T with initial values x1(0) = x2(0) =

[0 0]T and P10 = 0.1I2. Our aim is to find DRFKF x̂
(o)
k (t|t), k = 1, 2.

Variances of DFFKF, DRFKF, local Kalman filters (LKF) and the centralized Kalman filter
(CKF) are shown in Fig. 1. Fig.1 shows that the precision of DRFKF and DFFKF is higher than that

Fig. 1 Comparison of the precision of LKF, DFFKF, DRFKF and CKF
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of each LKF, but lower than that of CKF. However, DRFKF and DFFKF can increase the input
data rate and have reliability since the distributed parallel structure is used. Further, the precision of
DFFKF is higher than that of DRFKF, but DFFKF requires the inverse of a 12×12 matrix to compute
the weights, however, DRFKF requires in parallel the inverses of two 6 × 6 matrices to compute the
weights. So DRFKF can reduce the computational burden.

5 Conclusion

For stochastic singular systems with multiple sensors, a distributed full-order optimal fusion
Kalman filter is given based on the optimal fusion algorithm weighted by matrices in the LMV sense,
which brings the computational burden since the inverse of a high-dimension matrix is required to
compute weights at each step. To reduce the computational burden, a distributed reduced-order fusion
Kalman filter is presented, which can improve the real-time property since it involves in parallel the
inverses of two relatively low-dimension matrices to compute weights at each step.
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