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Abstract A robust stabilization problem is considered for time delay nonlinear discrete-time sys-
tems based on T-S fuzzy model. A necessary and sufficient condition for the existence of such
controllers is given through Lyapunov stability theorem. And it is further shown that this condition
is equivalent to the solvability of a certain linear matrix inequality, which can be solved easily by
using the LMI toolbox of Matlab. At last, an illustrative example of truck-trailer is presented to
show the feasibility and effectiveness of the proposed method.
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1 Introduction

Recently, fuzzy control has been one of the useful control techniques for uncertain and nonlinear
complicated systems. The conventional fuzzy control is composed of some if-then linguistic rules. The
property of it makes the control algorithm easily understood. Its main drawback, however, comes from
the lack of a systematic control design methodology. Particularly, the stability analysis and robustness
are not easy. To solve these problems, the idea that a linear system is adopted as the consequent part
of a fuzzy rule has evolved into the T-S model[1], which becomes quite popular today.

Time delays are common in engineering field and are a source of instability and poor performance
even in a nonlinear mode, so there are many results to deal with time delay problem[2,3]. With de-
velopment of computer, the discrete system has attracted great attention[4∼7], and the fuzzy control
has been extended to nonlinear time delay discrete system, but research results are too limited for
reference. The robust stabilization of linear system in [4] is discussed by using LMI techniques. The
stability of nonlinear system is considered by using fuzzy control[2,8,9] , in which the consequent part of
T-S model is linear normal system without uncertainties. In [2] the analysis and synthesis problem is
investigated including continuous and discrete time delay systems, but there is only time delay part in
the T-S model. The fuzzy robust tracking control is discussed in [10] for uncertain nonlinear system,
the parametric uncertainty is employed to the consequent part of the T-S model, and so the T-S model
can represent the original system exactly. However, it does not apply the method to the discrete time
delay system. In [11], the stabilization problem is discussed for a class of nonlinear discrete systems
with parameter uncertainty, without considering the time delay term.

So far the class of nonlinear time delay discrete systems have not yet been discussed by using the
T-S fuzzy control method, but time delay and uncertainty occur in practical engineering field. Based
on these intentions, in this paper, the robust stabilization problem will be considered for nonlinear
time delay discrete systems. And it will be shown that this stabilization problem is equivalent to the
solvability of a certain linear matrix inequality. Finally, an illustrative example of truck-trailer will
show the feasibility of the proposed method.

2 Problem formulation

The consequent part of T-S model has exact mathematics description, so the fuzzy T-S model as
in [12] is used in this paper. The ith rule of the fuzzy model for the nonlinear discrete system is of the
following form:

Plant Rule i: If z1(k) is F i
1 , · · ·, and zn(k) is F i

n then

x(k + 1) = (Ai + ∆Ai)x(k) +A1ix(k − τ ) + (Bi + ∆Bi)u(k)

y(k) = Cix(k), i = 1, · · · , q (1)
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where x(k) = ψ(k), for k = −τ, · · · ,−1, 0, is the initial value, z(k) = [z1(k) · · · zn(k)]T is the premise
variable vector, x(k) = [x1(k), · · · , xn(k)]T is the state vector, (j = 1, · · · , n), F i

j is a fuzzy set, τ > 0
is a constant, Ai ∈ Rn×n is the system matrix, Bi ∈ Rn×m and Ci ∈ Rl×n are input and output
matrices, respectively, ∆Ai and ∆Bi are matrices with appropriate dimensions, representing parametric
uncertainties in the plant model, and q is the number of rules of this T-S fuzzy model.

Here, by using a standard fuzzy inference method that is using a singleton fuzzifier product fuzzy
inference and weighted average defuzzifier for system (1), the final state of the fuzzy system is inferred
as follows.

x(k + 1) =

qX
i=1

hi(z(k))[Aix(k) + ∆Aix(k) +A1ix(k − τ ) +Biu(k) + ∆Biu(k)]

y(k) =

qX
i=1

hi(z(k))Cix(k) (2)

where

wi(z(k)) =

nY
j=1

F i
j (zj(k)), hi(z(k)) =

wi(z(k))
qX

i=1

wi(z(k))

, wi(k) > 0,

qX
i=1

wi(k) > 0, i = 1, 2, · · · , q

and F i
j is the fuzzy set, hi is the grade of membership of F i

j .

The main intention of this paper is to design the fuzzy T-S model controller, which can make
system (2) stabilized.

For the convenience of proof, the assumption is given as follows

Assumption 1. The parametric uncertainties in system (1) are norm bounded, satisfying the
followings

[∆Ai,∆Bi] = DiFi(k)[Ei1, Ei2], FT
i (k)Fi(k) 6 I

whereDi, Ei1, Ei2 are known real constant matrices of appropriate dimensions, and Fi(k) is an unknown
matrix function with Lebesgue-measerable element, I is the identity matrix of appropriate dimension.

3 Fuzzy state feedback control design

Based on the parallel distributed compensation (PDC), we consider the following fuzzy control
law for the fuzzy model (2)

Regulator Rule i:

If z1(k) is F i
1 and · · · and zn(k) is F i

n, then

u(k) = Kix(k), i = 1, · · · , q (3)

where Ki ∈ R
m×n is a constant gain feedback to be determined.

The overall state feedback fuzzy control law is represented by

u(k) =

qX
i=1

hi(z(k))Kix(k) (4)

Substituting (4) into (2) yields

x(k + 1) =

qX
i=1

qX
j=1

hi(z(k))hj(z(k))((Ai + ∆Ai)x(k) +A1ix(k − τ ) + (Bi + ∆Bi)Kjx(k)) (5)

For the necessary of proof, one lemma is given as follows.

Lemma 1. Given matrices H , F , and E with appropriate dimensions, FTF 6 I , and P > 0, for
any ε > 0, if P−1 − εHHT > 0, then (A+HFE)TP (A+HFE) 6 AT(P−1 − εHHT)−1A+ ε−1ETE.

The main results on the fuzzy robust stabilization of T-S model with parametric uncertainties are
summarized in the following theorem.
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Theorem 1. If there exist a symmetric and positive definite matrix P > 0 and some matrices
Ki(i = 1, 2, · · · , q), such that the following matrix inequalities are satisfied, then the stability of system
(4) is guaranteed via the T-S fuzzy model based state-feedback controller (3).26664 −X ∗ ∗ ∗ ∗

0 −H ∗ ∗ ∗
AiX +BiMi A1iH −X + εiDiD

T
i ∗ ∗

Ei1X + Ei2Mi 0 0 −εiI ∗
X 0 0 0 −H

37775 < 0 (6)

and26666666664
−X ∗ ∗ ∗ ∗ ∗
0 −H ∗ ∗ ∗ ∗

AiX +BiMj + AjX +BjMi

2

A1i +A1j

2
H −X + εij(DiD

T
i +DjD

T
j ) ∗ ∗ ∗

Ei1X +Ei2Mj

2
0 0 −εijI ∗ ∗

Ej1X + Ej2Mi

2
0 0 0 −εjiI ∗

X 0 0 0 0 −H

37777777775 < 0

(7)

Proof. Select Lyapunov function as

V (k) = x
TPx +

k−1X
α=k−τ

x
T(α)Sx(α) (8)

where X = P−1, H = S−1, x̄ =

�
x(k)

x(k − τ )

�
, G =

�
−P + S 0

0 −S

�
, Āij = Ai + ∆Ai + (Bi + ∆Bi)Kj ,

Mj = KjX. Giving the difference of (8), we get

∆V (k) = V (k+1)−V (k) = x
T(k+1)Px(k+1)−x

T(k)Px(k)+x
T(k)Sx(k)−x

T(k−τ )Sx(k−τ ) (9)

Then substituting (5) into (9) yields

∆V (k) =

qX
i=1

qX
j=1

qX
k=1

qX
l=1

hihjhkhl{x
T(k)[ĀT

ijPĀkl − P + S]x(k) + x
T(k)ĀT

ijPĀ1kx(k − τ )+

x
T(k − τ )ĀT

1iPĀklx(k) + x
T(k − τ )ĀT

1iPĀ1kx(k − τ ) − x
T(k − τ )Sx(k − τ )} =

qX
i=1

qX
j=1

qX
k=1

qX
l=1

hihjhkhlx̄
T(k)([Āij A1i]

TP [Ākl A1k] +G)x̄(k) =

1

4

qX
i=1

qX
j=1

qX
k=1

qX
l=1

hihjhkhlx̄
T{[Āij + Āji A1i + A1j ]

TP [Ākl + Ālk A1k + A1l] + 4G}x̄ 6

1

4

qX
i=1

qX
j=1

qX
k=1

qX
l=1

hihjhkhlx̄
T{[Āij + Āji A1i + A1j ]

TP [Āij + Āji A1i +A1j ] + 4G}x̄ =

qX
i=1

h2
i x̄

T(k)([Āii A1i]
TP [Āii A1i] +G)x̄(k)+

2

qX
i=1

qX
j=1

hihj x̄
T(k)

 �
Āij + Āji

2

A1i + A1j

2

�T
P

�
Āij + Āji

2

Āij + Āji

2

�
+G

!
x̄(k)

(10)

So system (2) can be stabilized if and only if there exist a symmetric and positive definite matrix P > 0
and some matrices Ki such that the following inequalities are satisfied

[Āii A1i]
TP [Āii A1i] +G < 0 (11)
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Āij + Āji

2

A1i +A1j

2

�T
P

�
Āij + Āji

2

Āij + Āji

2

�
+G 6 0, i < j (12)

It is noted that Theorem 1 gives the sufficient condition of ensuring the stability of the fuzzy
system (2). However, it does not give the methods of obtaining the solution of a common matrix P
and gain feedback Ki. Fortunately, (11) and (12) can be transferred into LMIs, so parametric P and
Ki can be determined by the solubility of LMI.

From Assumption 1, we can see [∆Ai,∆Bi] = DiFi(k)[Ei1, Ei2], so (11) is equivalent to

([Ai +BiKi A1i]+DiFi[Ei1+Ei2Ki 0])TP ([Ai +BiKi A1i]+DiFi[Ei1+Ei2Ki 0])+G < 0 (13)

From Lemma 1, (13) holds if there exists some real constant such that, P−1 − εiDiD
T
i > 0, and

G+ [Ai +BiKi A1i]
T(P−1 − εiDiD

T
i )[Ai +BiKi A1i] + ε−1

i [E1i +E2iKi 0]T[E1i +E2iKi 0] < 0
(14)

By using Schur complement, the inequality (14) can be rewritten as2664 −P + S 0 (Ai +BiKi)
T (E1i + E2iKi)

T

0 −S AT
1i 0

(Ai +BiKi) A1i −P−1 − εiDiD
T
i 0

E1i + E2iKi 0 0 −εiI

3775 < 0 (15)

Left multiplying and right multiplying (15) by diag[X H I I ], and then applying Schur com-
plement, (15) is then equivalent to26664 −X ∗ ∗ ∗ ∗

0 −H ∗ ∗ ∗
AiX +BiMi A1iH −X + εiDiD

T
i ∗ ∗

Ei1X + Ei2Mi 0 0 −εiI ∗
X 0 0 0 −H

37775 < 0

It is easy to transfer matrix (12) into the following26666666664
−X ∗ ∗ ∗ ∗ ∗
0 −H ∗ ∗ ∗ ∗

AiX +BiMj + AjX +BjMi

2

A1i +A1j

2
H −X + εij(DiD

T
i +DjD

T
j ) ∗ ∗ ∗

Ei1X +Ei2Mj

2
0 0 −εijI ∗ ∗

Ej1X + Ej2Mi

2
0 0 0 −εjiI ∗

X 0 0 0 0 −H

37777777775 < 0

By using LMI software of Matlab, the parametric uncertainty X and Ki can be solved, so the
controller can be determined.

Then we conclude the computational procedure as follows:
Step 1. Use T-S fuzzy implications and the fuzzy reasoning method to express the real plant

model.
Step 2. Based on the parallel distributed compensation, the fuzzy control law for the fuzzy T-S

model is constructed.
Step 3. The global fuzzy model can be obtained from Step 1 and Step 2.
Step 4. The stability analysis of the global fuzzy closed-loop system can be transferred into the

solution of linear matrix inequality (LMI).
Step 5. The LMI can be solved by the Matlab simulink toolbox.
It should be noted that the above procedure belongs to fuzzy modeling and fuzzy control process.

The solution of the LMI plays a crucial role in arriving at the desired solution. This procedure is
illustrated by the following example.

4 Simulation example

To illustrate the proposed fuzzy robust control approach, a control problem of truck-trailer[12]

with the time-delay state x1(k) is considered, i.e.,

x1(k + 1) = (1 − v
k̄

L
)x1(k) + (1 − v

k̄

L
)x1(k − τ ) + v

k̄

l
u(k) + a(k)x1(k)
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x2(k + 1) = x2(k) + v
k̄

L
x1(k) + v

k̄

L
x1(k − τ ) + a(k)x2(k)

x3(k + 1) = x3(k) + vk̄ sin(x2(k) + v
k̄

2L
x1(k) + v

k̄

2L
x1(k − τ )) + a(k)x3(k)

where l is the length of the truck, L is the length of the trailer, k̄ is the sampling time, and v is the
constant speed of the backward movement, a(k) = 0.2 sin(k) is the parameter uncertainty. Take fuzzy
model rule as follows.

R1 If z(k) = x2(k) + v
k̄

2L
x1(k) + v

k̄

2L
x1(k − τ ) is about 0

Then x(k + 1) = (A1 + ∆A1)x(k) +A11x(k − τ ) + (B1 + ∆B1)u(k)

R2 If z(k) = x2(k) + ν
k̄

2L
x1(k) + ν

k̄

2L
x1(k − τ ) is about π or − π

Then x(k + 1) = (A2 + ∆A2)x(k) +A12x(k − τ ) + (B2 + ∆B2)u(k)

where

A1 =

266664 1 −
vk̄

L
0 0

vk̄

L
1 0

v2k̄2

2L
vk̄ 1

377775 , B1 =

264 vk̄l0
0

375 , ∆A1 =

24 0.2 sin(k) 0 0
0 0.2 sin(k) 0
0 0 0.2 sin(k)

35
A11 =

266664 1 − v
k̄

L
0 0

v
k̄

L
0 0

v2k̄2

2L
0 0

377775 , A2 =

266664 1 −
vk̄

L
0 0

vk̄

L
1 0

dv2k̄2

2L
dvk̄ 1

377775 , B2 =

264 vk̄l0
0

375
∆A2 =

24 0.2 sin(k) 0 0
0 0.2 sin(k) 0
0 0 0.2 sin(k)

35 , A12 =

266664 1 − v
k̄

L
0 0

v
k̄

L
0 0

dv2k̄2

2L
0 0

377775
and l = 2.8, L = 5.5, v = −1.0, k̄ = 2.0, a = 0.7, τ = 0.5, d = 0.01/π, ∆B1 = 0, ∆B2 = 0.

From the parallel distributed compensation principle, the fuzzy control law can be constructed as

R1 If z(k) = x2(k) + v
k̄

2L
x1(k) + v

k̄

2L
x1(k − τ ) is about 0

Then u(k) = K1x(k)

R2 If z(k) = x2(k) + ν
k̄

2L
x1(k) + ν

k̄

2L
x1(k − τ ) is about π or − π

Then u(k) = K2x(k)

The membership function is taken as follows.

h1(z(k)) = (1 −
1

1 + exp{−3[z(k) − π/2]}
) ×

1

1 + exp{−3[z(k) − π/2]}

h2(z(k)) = 1 − h1(z(k))

z(k) = x2(k) + v
k̄

2L
x1(k) + v

k̄

2L
x1(k − τ )

where ∆A1 and ∆A2 are parameter uncertainties.
From (6) and (7), the state feedback matrices Ki and X = P−1 can be solved by the LMI software

of Matlab as follows.

X =

24 0.0104 0.0026 0.0000
0.0026 0.0013 0.0007
0.0000 0.0007 0.0029

35 , K1 = [3.3673 −4.5910 1.0729], K2 = [3.3673 −4.5910 1.0729]
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From the solutions of the LMI, the controller of the system can be determined.
The simulation figures are as follows.
From the above figures, it is seen that Fig. 1 is about the closed-loop system without time-delay,

the trajectories of states x1, x2, x3 are asymptotical tend to zero by using the fuzzy controller designed
in this paper. At the same time, the state trajectories of closed-loop system with time-delay can also
be stabilized by using the designed controller here in Fig. 2. Based on these results, it is obvious that
the controller proposed in this paper can stabilize the closed-loop system, so the methods presented
here are simple and feasible.

Fig. 1 The trajectories of the state variables
x1, x2, and x3

Fig. 2 The trajectories with time delay of

the state variables x1, x2, and x3

5 Conclusions

In this paper, the robust stabilization for certain of nonlinear time delay discrete systems is
considered. A stability condition is deduced based on Lyapunov theorem and this condition can be
transferred into the solubility of the LMI problem. In the last, it is shown that the method proposed
in this paper is feasible by the simulation of truck-trailer[12] based on the LMI toolbox of Matlab.
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