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Abstract This paper discusses the problem of the H∞ filtering for discrete time 2-D singular

Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such

that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞

performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient

condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A

numerical example is provided to demonstrate the applicability of the proposed approach.
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1 Introduction

In the past decades, 2-D singular systems have received much interest due to their extensive

applications in many practical areas[1∼4]. An asymptotic stability theory based on the concept of

jump modes was proposed in [1]. In [3] a singular observer design approach was developed while the

problem of robust H∞ control for uncertain 2-D singular Roesser models (2-D SRM) was considered in

[2]. However, there is no remarkable progress to be reported on the problem of H∞ filtering for 2-D

singular systems. This motivates the present study.

In this paper, we consider the problem of observer-based H∞ filtering for 2-D singular Roesser

models (2-D SRM). Attention is focused on the design of 2-D singular filters such that the resulting

closed-loop system is acceptable, jump modes free and stable, and satisfies a prespecified H∞ perfor-

mance level. General Riccati inequality approach and bilinear matrix inequalities(BMI) approach are

presented for the design of observer-based H∞ filters.

2 Problem formulation and preliminaries for 2-D singular systems

Consider the following 2-D SRM (Σ):

E

�
xh(i + 1, j)

xv(i, j + 1)

�
= A

�
xh(i, j)

xv(i, j)

�
+ Ld(i, j) (1)

y(i, j) = C

�
xh(i, j)

xv(i, j)

�
+ Dd(i, j) (2)

z(i, j) = H

�
xh(i, j)

xv(i, j)

�
(3)

with the zero boundary conditions:

x
h(0, j) = 0, x

v(i, 0) = 0 (4)

where xh(i, j) ∈ Rn1 , xv(i, j) ∈ Rn2 are the horizontal and vertical states, respectively, y(i, j) ∈ Rl is

the measured output, z(i, j) ∈ Rp is the signal to be estimated, d(i, j) ∈ Rq is the noise signal which
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belongs to l2{[0,∞), [0,∞)}. A, L, C, D, and H are real matrices of appropriate dimensions. E ∈ Rn×n

is possibly singular, satisfying the 2-D regular pencil condition, i.e., for some finite pair (z, w):

det[EI(z,w) − A] =

n̄1X
k=0

n̄2X
l=0

aklz
k
w

l 6= 0

where I(z,w) = diag{zIn1
, wIn2

}. When an̄1,n̄2
6= 0, system (Σ) is called acceptable.

In terms of the singular observer theory[4], the following observer-based 2-D singular filter is

adopted for studying the H∞ filtering problem of 2-D SRM (Σ̂):

E

�
x̂h(i + 1, j)

x̂v(i, j + 1)

�
= A

�
x̂h(i, j)

x̂v(i, j)

�
+ K

�
y(i, j) − C

�
x̂h(i, j)

x̂v(i, j)

��
(5)

ẑ(i, j) = H

�
x̂h(i, j)

x̂v(i, j)

�
(6)

x̂
h(0, j) = 0, x̂

v(i, 0) = 0 (7)

Assumption 1. Systems (Σ) and (Σ̂) are acceptable.

Remark 1. [3] presented that the assumption of acceptability is needed for the 2-D singular

systems, because unacceptable systems are ill-posed in some ways.

Denote the state estimation error as

e(i, j) =

�
eh(i, j)

ev(i, j)

�
=

�
xh(i, j)

xv(i, j)

�
−

�
x̂h(i, j)

x̂v(i, j)

�
and the estimation error for the signal z as

ze(i, j) = z(i, j) − ẑ(i, j)

Then, from (Σ) and (Σ̂), we have the following dynamic error systems (Σe)

E

�
eh(i, j)

ev(i, j)

�
= (A − KC)

�
eh(i, j)

ev(i, j)

�
+ (L − KD) d(i, j) (8)

ze(i, j) = H

�
eh(i, j)

ev(i, j)

�
(9)

and G(z, w) = H [EI(zw)−Ak]
−1Lk is the transfer function matrix from the disturbances d(i, j) to the

controlled output ze(i, j), where Ak = A−KC, Lk = L−KD, and ‖G(z, w)‖∞ = sup
ω1,ω2∈[0,2π)

σ̄[G(ejω1 , e
jω2)],

in which σ̄(·) represents the maximum singular value of matrix (·).

The observer-based H∞ filtering problem to be addressed in this paper can be formulated as

follows: given a scalar γ > 0 and the 2-D SRM in (Σ), find a 2-D singular filter of the form (Σ̂), such that

dynamic error systems (Σe) is acceptable, internally stable and jump modes free, and ‖G(z, w)‖∞ < γ.

Consider the following system of 2-D SRM (Σ0)

E

�
xh(i + 1, j)

xv(i, j + 1)

�
= A

�
xh(i, j)

xv(i, j)

�
+ Ld(i, j) (10)

z(i, j) = H

�
xh(i, j)

xv(i, j)

�
(11)

with zero boundary condition . We then have the following lemmas.

Lemma 1[1]. 2-D SRM (Σ0) is acceptable and internally stable if and only if

p(z,w) 6= 0, 0 < |z| 6 1, 0 < |w| 6 1 (12)

where p(z, w) = det[E − AI(z,w)].
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3 Observer-based 2-D singular H∞ filter design

In this section, we shall present two approaches for the observer-based 2-D H∞ filtering. They

are the general Riccati inequality approach and bilinear matrix inequalities (BMI) approach.

Lemma 2. Given a positive scalar γ > 0, the 2-D SRM (Σ0) with zero boundary condition

is acceptable, internally stable and jump modes free, and satisfies ‖G(z, w)‖∞ < γ if there exists a

symmetric block-diagonal matrix P = diag{Ph, Pv} ∈ Rn×n such that the following LMIs hold

EPE
T

> 0 (13)�
APAT − EPET + LLT APHT

HPAT HPHT − γ2I

�
< 0 (14)

γ
2
I − HPH

T
> 0 (15)

where Ph ∈ Rn1×n1 and Pv ∈ Rn2×n2 .

Proof. From (14), it is easy to see that

APA
T − EPE

T
< 0 (16)

By this and (13), we assert that system (Σ0) is acceptable, internally stable, and jump modes free. To

show this, we suppose that there exist complex numbers z1 and w1 with 0 < |z1| 6 1, 0 < |w1| 6 1 such

that

p(z1, w1) = det[E − AI(z1, w1)] = 0 (17)

that is,

det[ET − I
H(z1, w1)A

T] = 0 (18)

This implies that there exist some complex numbers z0 and w0 with 1 6 |z0| < ∞, 1 6 |w0| < ∞ and

a vector x0 6= 0 such that

(I(z0, w0)E
T − A

T)x0 = 0 (19)

By equation (19) one gets

x
H
0 (APA

T − EPE
T)x0 = (ET

x0)
Hdiag{(|z0| − 1)Ph, (|w0| − 1)Pv}(E

T
x0) > 0 (20)

This contradicts with (16). Hence, we have that 2-D SRM (Σ0) is acceptable, stable internally, and

jump modes free. Noting this and following a similar line as in the proof of Theorem 1 in [2], the desired

result follows immediately. �

3.1 General Riccati inequality approach

Assumption 2. DDT > 0.

Note that Assumption 2 is standard in the Kalman and H∞ filtering for 1-D systems. It implies

that all the measurements are corrupted by noise.

Theorem 1. Consider the system (Σ) satisfying Assumption 2 and zero boundary condition.

Given a prescribed level of H∞ noise attenuation γ > 0, the H∞ filtering problem is solvable if there

exists a symmetric block-diagonal matrix Q = diag{Qh, Qv} ∈ Rn×n, (Qh ∈ Rn1×n1 , Qv ∈ Rn2×n2)

such that

EQE
T

> 0 (21)

AQA
T − EQE

T − (AQC̄
T + LD̄

T)(C̄QC̄
T + R̄)−1(C̄QA

T + D̄L
T) + LL

T
< 0 (22)

where C̄ =

�
C

H

�
, D̄ =

�
D

0

�
, R̄ =

�
DDT 0

0 −γ2I

�
.

In this situation, a suitable filter gain of (5) is given by

K = (AV C
T + LD

T)(CV C
T + DD

T) (23)
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where V = Q + QHT
Θ

−1HQ, Θ = γ2I − HQHT > 0.

Proof. From Lemma 2, the error system (Σe) is acceptable, internally stable and jump modes free,

and satisfies ‖G(z, w)‖∞ < γ if there exists a symmetric block-diagonal matrix Q = diag{Qh, Qv} ∈

Rn×n, (Qh ∈ Rn1×n1 , Qv ∈ Rn2×n2) such that

EQE
T

> 0 (24)

(A − KC)Q(A − KC)T − EQE
T + (L − KD)(L − KD)T+

(A − KC)QH
T(γ2

I − HQH
T)−1

HQ(A− KC)T < 0 (25)

Θ = γ
2
I − HQH

T
> 0 (26)

let ΓA = HQAT, ΓL = CQAT + DLT, ΓC = CQAT

X1 = DD
T + CQC

T + Γ
T
C Θ

−1
ΓC , X2 = ΓL + Γ

T
C Θ

−1
ΓA (27)

Then (25) can be rewritten as

AQA
T − EQE

T + LL
T + KX1K

T − KX2 − X
T
2 K

T + Γ
T
AΘ

−1
ΓA < 0

In view of Assumption 2, X1 > 0. Thus, it is easy to obtain

AQA
T − EQE

T + LL
T − X

T
2 X

−1
1 X2 + Γ

T
AΘ

−1
ΓA

(−K
T + X

−1
1 X2)

T
X1(−K

T + X
−1
1 X2) < 0 (28)

From (22) and (27), it can be shown that K = XT
2 X−1

1 and (22) is equivalent to

AQA
T − EQE

T + LL
T − X

T
2 X

−1
1 X2 + Γ

T
AΘ

−1
ΓA < 0 (29)

Hence, Q and K in (22) and (23) satisfy (29) or equivalently (29), i.e., the H∞ filtering problem is

solvable. This completes the proof. �

Remark 3. Solving a general Riccati inequality to obtain a block-diagonal solution may not be

easy. In the following subsection, we shall propose a BMI approach to computing the filter gain.

3.2 BMI approach

Theorem 2. Consider the system (Σ) with zero boundary condition. Given a prescribed level

of H∞ noise attenuation γ > 0, the H∞ filtering problem is solvable if there exist matrices S ∈ Rn×n,

R1 ∈ Rn×n, R2 ∈ Rl×n and a symmetric block-diagonal matrix P = diag{Ph, Pv} ∈ Rn×n, (Ph ∈

Rn1×n1 , Pv ∈ Rn2×n2) such that

EPE
T

> 0 (30)

γ
2
I − HPH

T
> 0 (31)2664−EPET + AkRT

1 + R1A
T
k AkRT

2 + R1H
T −R1 + AkS Lk

R2A
T
k + HRT

1 −γ2I + HRT
2 + R2H

T −R2 + HS 0

−RT
1 + STAT

k −RT
2 + STHT P − S − ST 0

LT
k 0 0 −I

3775 < 0 (32)

where Ak = A − KC, Lk = L − KD.

Proof. By the Schur complement formula, (32) equivalent to24−EPET + LLT + AkRT
1 + R1A

T
k AkRT

2 + R1H
T −R1 + AkS

R2A
T
k + HRT

1 −γ2I + HRT
2 + R2H

T −R2 + HS

−RT
1 + STAT

k −RT
2 + STHT P − S − ST

35 < 0 (33)

Let W =

�
−EPET + LLT 0

0 −γ2I

�
and Ψ = ⌊AT

k HT⌋, R =

�
R1

R2

�
Then (32) can be written as�

W + Ψ
TRT + RΨ −R + Ψ

TS

−RT + ST
Ψ P − S − ST

�
< 0 (34)



No. 2 XU Hui-Ling et al.: Observer-based H∞ Filtering of 2-D Singular System · · · 217

Note that this is in turn equivalent to[4] W + Ψ
TPΨ < 0

Then

W + Ψ
T
PΨ =

�
−EPET + LLT + AkPAT

k AkPHT

HPAT
k −γ2I + HPHT

�
< 0 (35)

Therefore, the desired result follows immediately from (30), (31) and Lemma 1. This completes the

proof. �

From Theorem 2, the following iterative algorithm can be used to solve the uncertain 2-D SRM

H∞ filtering problem.

4 Algorithm

Step 1. Choose an initial K, and solve the following convex optimization problem:

min
(P,S,R)

{µ}

Such that

�
W + Ψ

TRT + RΨ −R + Ψ
TS

−RT + ST
Ψ P − S − ST

�
< µI

and (29)∼(30) are hold. If µ 6 0, then the problem is solved; otherwise, go to Step 2.

Step 2. With the obtained matrices P, S, and R, solve the above optimization with respect to

K. Again, if µ 6 0, the problem is solved; otherwise, go to Step 1.

5 Numerical example

Consider a 2-D SRM (Σ) with parameters: (n1 = 1, n2 = 2)

E =

24 1 0 1

0 1 0

0 0 0

35 , A =

24 2 1 0

0 0 1

0 0 1

35 , C = [1 0.2 1], L =

24 0.1

0.2

0.3

35 , H = [0.1 0.1 0.2], D = 0.2

It is easy to see that this system is an acceptable, unstable system with jump-mode.

Let γ = 0.5. By the above algorithm, the solution to BMIs (29)∼(31) is as follows.

P =

24 6.1293 0 0

0 2.6159 −2.2767

0 −2.2767 −2.1312

35 , R1 =

24−1050.7 878.3 749.0

878.3 734.1 −625.5

749.0 −625.5 −533.9

35
R2 = [159.8490 − 133.4886 − 113.5674]

The corresponding filter gain can be obtained as: K = [2.7718 − 0.1603 − 1.0000]T

Fig. 1 shows the frequency response of the error system (Σe) over all frequencies. It can be observed

that the amplitude response of the filtering error transfer function is below the prescribed H∞ noise

attenuation level γ = 0.5.

Fig. 1 Frequency response of the filtering error system



218 ACTA AUTOMATICA SINICA Vol. 32

6 Conclusions

This paper has solved the H∞ filtering problem for 2-D singular Roesser models. Both the general

Riccati inequality and bilinear matrix inequalities (BMI) have been developed for the design of an

observer-based 2-D singular H∞ filter. Numerical example is provided to demonstrate the applicability

of the proposed approach.

References

1 Zou Y, Campbell S L. The jump behavior and stability analysis for 2-D singular systems. Multidimensional

Systems & Signal Processing, 2000, 11(4): 321∼338

2 Xu H L, Zou Y, Xu S Y, Lam J. Bounded real lemma and robust H∞ control of 2-D singular Roesser models.

Systems & Control Letters, 2005, 54(4): 339∼346

3 Wang W Q, Zou Y. The detectability and observer design of 2-D singular systems. IEEE Transactions on

Circuits & Systems, 2002, 49(5): 698∼703

4 Peaucelle D, Arzelier D, Bachelier O, Bernussou J. A new robust D-stability condition for real convex polytopic

uncertainty. Systems & Control Letters, 2000, 40(1): 21∼30

XU Hui-Ling Received her Ph.D. degree from Nanjing University of Science and Technology in 2005. Her

research interests include singular system, 2-D systems, and robust control.

LU Jun-Wei Received her bachelor degree from the Nanjing University of Aeronautics and Astronautics,

Nanjing, P.R. China in 2001. Her research interests include robust filtering and control, time-delay systems, and

nonlinear systems.

ZOU Yun Received his Ph. D. degree in automation from Nanjing University of Science and Technology

in 1990. His research interests include singular systems, multidimensional systems, and transient stability of

power systems.


