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Abstract The admissibility analysis and robust admissible control problem of the uncertain discrete-
time switched linear singular (SLS) systems for arbitrary switching laws are investigated. Based on
linear matrix inequalities, some sufficient conditions are given for: A) the existence of generalized
common Lyapunov solution and the admissibility of the SLS systems for arbitrary switching laws,
B) the existence of static output feedback control laws ensuring the admissibility of the closed-loop
SLS systems for arbitrary switching laws and norm-bounded uncertainties.
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1 Introduction

Recently, the problem of stability and stabilization of switched systems has attracted considerable

attention in the area of systems and control[1,2]. Among others, a series of methods and conditions

based on common quadratic Lyapunov functions (CQLFs) have been given for analyzing the stability

of switched systems for arbitrary switching laws[1,2]. It was pointed out in [3] that the problem of finding

a CQLF was one of the unsolved problems in mathematical systems and control theory. For discrete-

time systems which have only two stable second order discrete time linear subsystems, a necessary and

sufficient condition on the existence of CQLF was given in [2]. But for the general cases of higher order

or more subsystems, it seems that there is still no a necessary and sufficient condition on the existence

of CQLF.

Switched linear singular (SLS) system is an important class of switched systems, which arises from,

for example, electrical networks and economic systems[4∼6]. Due to the existence of switching actions,

state-inconsistence phenomena often occur in the electrical networks. This may result in discontinuity of

network variables and presence of impulse voltage and currents at the switching instants. For dynamic

economic systems, as pointed out by Cantó et al. in [5], when the interrelationships among different

industrial sectors are described, and the capital and the demand are variables depending on seasons,

the system can be modelled as periodically switched singular systems. Both analysis and synthesis of

switched singular systems are more difficult, since stability, regularity, impulse elimination and state

consistence of such systems should be considered at the same time.

In this paper, we will analyze the admissibility (i.e., the regularity, causality and stability) of

discrete-time SLS systems for arbitrary switching laws and norm-bounded uncertainties. The key

difference from the conventional switched systems is that the dimensions of the dynamic parts of each

subsystem of SLS systems may be different from each other. So, the conventional Lyapunov frame is

not suitable for the stability analysis of SLS systems. It is pointed out that for the SLS systems with

a generalized common Lyapunov function the dynamic parts of subsystems have the same dimension.

Furthermore, the conditions of the existence of generalized common Lyapunov solution and static output

feedback control laws ensuring the admissibility of the closed-loop SLS systems for arbitrary switching

laws and norm-bounded uncertainties are presented based on LMIs.

2 Notations and preliminary results

Consider the following uncertain discrete-time switched linear singular (SLS) system:�
Eσx(k + 1) = (Aσ + ∆Aσ)x(k) + Bσuσ(k)

yσ(k) = Cσx(k)
(1)
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where σ : {0, 1, · · ·} → Λ = {1, 2, · · · , m} is the switching law; x(k) ∈ R
n, ui(k) ∈ R

mi , yi(k) ∈ R
pi ,

i ∈ Λ, are the state, input and output, respectively; Ei ∈ R
n×n, rankEi = ni < n; Ai ∈ R

n×n,

Bi ∈ R
n×mi , Ci ∈ R

pi×n, i ∈ Λ; ∆Ai, i ∈ Λ, is the norm-bounded parameter uncertainty of the form

∆Ai = MiFi(ρ)Ni (2)

Here Mi ∈ R
n×si , Ni ∈ R

ti×n are known real constant matrices, and the uncertain matrix Fi(ρ) ∈ R
si×ti

satisfies

Fi(ρ)Fi(ρ)T 6 I, ∀ ρ ∈ Σ with Σ being a compact set (3)

Remark 1. ∆Ai, i ∈ Λ, is the so-called “norm-bounded uncertainties” and is considered fre-

quently in the robust control.

Throughout this paper, C denotes the set of all complex numbers, R
n denotes the real n-dimensional

space; R
n×n denotes the real n × n-dimensional space; for a given vector or matrix X, XT denotes its

transpose, rankX denotes its rank, X(1) denotes a 1-inverse of X, R(X) denotes the subspace spanned

by the columns of X; N (X) denotes the right zero subspace of X; for an n×m full column rank matrix

A, A⊥ denotes an n × (n − m) matrix with the following properties: A⊥TA = 0, [A A⊥] is invertible

and A⊥TA⊥ = I ; and for a square matrix X, λ(X) denotes its spectrum.

Definition 1.[7]. Consider two SLS systems:

Σ1 :

�
Eσx(k + 1) = Aσx(k) + Bσu(k)

y(k) = Cσx(k)
and Σ2 :

�
Ēσx̄(k + 1) = Āσx̄(k) + B̄σu(k)

y(k) = C̄σx̄(k)

If there exist nonsingular matrices Qi and P such that QiEiP = Ēi, QiAiP = Āi, QiBi = B̄i, CiP = C̄i,

i ∈ Λ, and x̄ = P−1x, then systems Σ1 and Σ2 are called restricted system equivalent (r.s.e.).

Remark 2. It should be pointed out that in Definition 1, the transformation matrix P is uniform

with respect to i ∈ Λ. This is helpful in finding one state space coordinate basis for all the subsystems

so that the stability analysis and feedback control can conveniently and concisely be done via the same

coordinate basis.

Definition 2. Consider the SLDS system

Eσx(k + 1) = Aσx(k) (4)

1) For a given i ∈ Λ, the pair (Ei, Ai) is said to be regular if there exists a constant scalar si ∈ C

such that det(siEi − Ai) 6= 0.

The SLS system (4) is said to be regular if every pair (Ei, Ai), i ∈ Λ, is regular.

2) For a given i ∈ Λ, the pair (Ei, Ai) is said to be causal if it is regular and deg(det(siEi −Ai)) =

rankEi for all si ∈ C.

The SLS system (4) is said to be casual if every pair (Ei, Ai), i ∈ Λ, is casual.

Definition 3. The SLS system (4) is said to be admissible for arbitrary switching law if it is

regular, causal and asymptotically stable for arbitrary switching laws.

Remark 3. By Definitions 1-3 one can see that the admissibility of a singular system is preserved

under restricted system equivalent transformation.

Lemma 1[8]. Given matrices Ω , Γ and Ξ of appropriate dimensions and with Ω symmetrical,

Ω + ΓF (ρ)Ξ + (ΓF (ρ)Ξ )T < 0 for all F (ρ) satisfying F (ρ)TF (ρ) 6 I

if and only if there exists a scalar ǫ > 0 such that Ω + ǫΓΓ
T + ǫ−1

Ξ
T
Ξ < 0.

3 Generalized common lyapunov solution

Similar to [1], we will briefly call the symmetric matrix P satisfying

EiPE
T
i > 0, AiPA

T
i − EiPE

T
i < 0, ∀i ∈ Λ (5)

a generalized common Lyapunov solution (GCLS).

In this section, under a certain condition, we give a strict LMI-based condition for the GCLS

existence of SLS systems, and show that if an SLS system has a GCLS, then it is admissible for

arbitrary switching laws.
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Proposition 1. If there exists a GCLS for system (4), then for all i ∈ Λ, Ei has the same rank.

Proof. From the definition of the GCLS, there exists a symmetric matrix P such that (5) holds.

This implies that for any fixed i, (Ei, Ai) is admissible[9]. Thus, there exist matrices Mi and Ni, i ∈ Λ,

such that[7] MiEiNi = diag [Ini
0] , MiAiNi = diag [Gi In−ni

] . Denote N−1
i PN−T

i =

�
Pi11 Pi12

PT
i12 Pi22

�
,

where Pi11 ∈ R
ni×ni and Pi22 ∈ R

(n−ni)×(n−ni) are symmetric, Pi12 ∈ R
ni×(n−ni). By the proof of

Lemma 1 of [9], we know Pi11 > 0, Pi11 − Pi12P
−1
i22PT

i12 > 0, and Pi22 < 0, i ∈ Λ.

Let

Ri =

"
(Pi11 − Pi12P

−1
i22PT

i12)
−

1

2 0

0 P
− 1

2

i22

# �
Ini

−Pi12P
−1
i22

0 In−ni

�
, i ∈ Λ

Then RiN
−1
i PN−T

i RT
i = diag [Ini

− In−ni
] , i ∈ Λ. This together with the inertia law of quadratic

forms[10] leads to n1 = · · · = nm. Thus, for all i ∈ Λ, Ei has the same rank. �

In the sequel, we assume that for all i ∈ Λ, Ei has the same rank, and denote the rank by r. In

order to analyze the admissibility of system (4), we need to find the transformation matrices Mi and

N , i ∈ Λ, such that system (4) is r.s.e. to�
x1(k + 1) = Aσ11x1(k) + Aσ12x2(k)

Aσ21x1(k) + Aσ22x2(k) = 0
(6)

where MiEiN = diag [Ir 0], MiAiN =

�
Ai11 Ai12

Ai21 Ai22

�
, N−1x =

�
x1

x2

�
, Ai11 ∈ R

r×r, x1 ∈ R
r.

Lemma 2. There exist transformation matrices Mi, i ∈ Λ, and N such that system (4) is r.s.e.

to (6) if and only if N (E1) = · · · = N (Em).

Proof. For necessity, suppose that there exist transformation matrices Mi and N such that system

(4) is r.s.e. to (6) and let N = [N̄ Φ]. Then, it is easy to see that R(Φ) = N (Ei), i ∈ Λ. Hence,

N (E1) = · · · = N (Em).

For sufficiency, suppose that N (E1) = · · · = N (Em). Then, one can choose Φ ∈ R
n×(n−r) such

that for any i ∈ Λ, EiΦ = 0; and, there are a matrix N̄ and nonsingular matrix Mi ∈ R
n×n, i ∈ Λ,

such that N = [N̄ Φ] nonsingular and MiEiN = diag[Ir 0]. Thus, system (4) is r.s.e. to (6). �

So, in the following discussion we assume:

Assumption 1. For any i ∈ Λ, N (Ei) is the same.

Theorem 1. Under Assumption 1, the discrete-time SLS system (4) is admissible for arbitrary

switching laws if there exists a symmetric matrix P ∈ R
n×n such that (5) holds.

Proof. By the proof of Lemma 2, we know that under Assumption 1, one can find matrices

Mi ∈ R
n×n, i ∈ Λ, and N ∈ R

n×n such that system (4) is r.s.e to (6). By Remark 3, the admissibility

of (4) and (6) is equivalent. So, we need only to prove that (6) is admissible. Suppose that there exists a

symmetric matrix P ∈ R
n×n such that (5) holds. Then from [9] we know that the subsystems (Ei, Ai),

i ∈ Λ, are causal and regular. So, by [7], Ai22, i ∈ Λ, are nonsingular. Furthermore, by Definition 2, the

switched system (4) is causal and regular. Let N−1PN−T =

�
P11 P12

PT
12 P22

�
. Then by (5), we have P11 > 0

and Āi1P11Ā
T
i1−P11 < 0 where Āi1 = Ai11−Ai12A

−1
i22Ai21. This implies that I−P

− 1

2

11 Āi1P11Ā
T
i1P

− 1

2

11 >

0. Then it follows that 0 < α 6 1 where α = mini∈Λ λ(I − P
−

1

2

11 Āi1P11Ā
T
i1P

−
1

2

11 ). By (6) and the

non-singularity of Ai22, we have

x2(k) = −A
−1
σ22Aσ21x1(k) (7)

and

x1(k + 1)P11x
T
1 (k + 1) = x1(k)P11x

T
1 (k) − x1(k)(P11 − Āσ1P11Ā

T
σ1)x

T
1 (k) 6 (1− α)k+1

x1(0)P11x
T
1 (0)

This implies that the sub-state x1(k) is asymptotically convergent to zero, and so is the x2(k) by (7).

Therefore, system (4) is admissible for arbitrary switching laws. �

Theorem 1 gives a sufficient condition under which system (4) is admissible for arbitrary switching

laws. The following corollary transforms the matrix inequality conditions to strict LMIs conditions.
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Corollary 1. Under Assumption 1, there exists a symmetric matrix solution P such that (5)

holds if and only if there exist symmetric matrices X ∈ R
n×n and Y ∈ R

(n−r)×(n−r), X > 0, such that

Ai(X + ΦY Φ
T)AT

i − EiXE
T
i < 0, ∀i ∈ Λ (8)

Proof. For sufficiency, suppose that there exist matrices X ∈ R
n×n, Y ∈ R

(n−r)×(n−r), and

X > 0 such that (8) holds. Let P = X + ΦY Φ
T. Then, by EiΦ = 0 we can see EiPET

i = EiXET
i >

0, AiPAT
i − EiPET

i = Ai(X + ΦY Φ
T)AT

i − EiXET
i < 0. Thus, (5) holds.

For necessity, suppose P is a symmetric matrix solution of (5). Choose a symmetric matrix

X22 ∈ R
(n−r)×(n−r) such that �

P11 P12

PT
12 X22

�
> 0 (9)

This is feasible since from the proof procedure of Theorem 1 we have P11 > 0, and by Schur Complements[11]

it suffices to choose X22 > PT
12P

−1
11 P12.

Let

X = N

�
P11 P12

PT
12 X22

�
N

T and Y = P22 − X22 (10)

Then, by (9), the first equation of (10) and the nonsingularity of N we have X > 0. And by Φ =

N [0 In−r]
T and (9) we have P = X + ΦY Φ

T. Thus, (8) follows from the second inequality of (5). �

From Theorem 1 and Corollary 1 we can easily have

Corollary 2. Under Assumption 1, if there exist matrices X ∈ R
n×n, X > 0, and a symmetric

matrix Y ∈ R
(n−r)×(n−r), such that Ai(X + Φ

TY Φ)AT
i − EiXET

i < 0, ∀i ∈ Λ, then the discrete-time

SLS system (4) is admissible for arbitrary switching laws.

4 Robust admissibility of SLS systems

Consider the following uncertain discrete-time SLS system:

Eσx(k + 1) = (Aσ + ∆Aσ)x(k) (11)

where Ei, σ, x(k), Ai, and ∆Ai, i ∈ Λ, are as in (1).

The purpose of this section is to give a sufficient condition in terms of strict LMIs for the admis-

sibility of uncertain discrete-time SLS system (11) for arbitrary switching laws. Let

P (X,Y ) = X + ΦY Φ
T (12)

By a similar proof procedure to those of Theorem 1 and Corollary 1, we have

Lemma 3. Under Assumption 1, if there exist symmetric matrices X ∈ R
n×n and Y ∈ R

(n−r)×(n−r),

X > 0, such that

(Ai + ∆Ai)P (X, Y )(Ai + ∆Ai)
T − EiXE

T
i < 0, ∀i ∈ Λ (13)

then the uncertain discrete-time SLS system (11) is admissible for arbitrary switching laws, where

P (X, Y ) is given by (12).

Theorem 2. Under Assumption 1, if there exist symmetric matrices X ∈ R
n×n and Y ∈

R
(n−r)×(n−r), X > 0, and scalars ǫi > 0, γi > 0, i ∈ Λ, such that�

AiP (X, Y )AT
i − EiXET

i + γiMiM
T
i AiP (X,Y )NT

i

(AiP (X,Y )NT
i )T −(γiI − Qi)

�
< 0, i ∈ Λ (14)

then the uncertain SLS system (11) is admissible for arbitrary switching laws, where Qi = ǫiI +

NiP (X,Y )NT
i , and P (X, Y ) is given by (12).

5 Output feedback based robust admissible control

The purpose of this section is to design a robust static output feedback control for the SLS system

(1) to ensure the admissibility of the closed-loop system for arbitrary switching laws. It was pointed out

that the problem of fining the static output feedback matrix is NP-hard[12]. To overcome this difficulty,

we give a matrix inequality condition for the existence of the feedback matrix, which can be solved

easily by using the MatLab LMI ToolBox.
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The output feedback controller to be used is of the form:

uσ(k) = Gσyσ(k) (15)

where Gi ∈ R
mi×pi , i ∈ Λ. And the corresponding closed-loop system is of the following form:

Eσx(k + 1) = (Āσ + ∆Aσ)x(k) (16)

where Āσ = Aσ + BσGσCσ.

Theorem 3. Under Assumption 1, if there exist matrices X ∈ R
n×n, X > 0, Si ∈ R

n×n,

Ti ∈ R
n×n, Li ∈ R

mi×pi , nonsingular matrices Fi ∈ R
pi×pi , a symmetric matrix Y ∈ R

(n−r)×(n−r),

scalars ǫi > 0, and γi > 0, such that ∀i ∈ Λ,24 Ai1 AiTi − BiLiCi − ST
i AiP (X, Y )NT

i + BiLiCiN
T
i

(AiTi − BiLiCi − ST
i )T P (X, Y ) − Ti − TT

i 0

(AiP (X, Y )NT
i + BiLiCiN

T
i )T 0 −(γiI − Qi)

35 < 0 (17)

FiCi = CiTi, FiCi = CiSi, FiCi = CiP (X,Y ) (18)

where Ai1 = AiSi + ST
i AT

i − BiLiCi − CT
i LT

i BT
i − EiXET

i + γiMiM
T
i , Qi = NiP (X,Y )NT

i + ǫiI ,

P (X, Y ) is given by (12), then the closed-loop system (16) is admissible for arbitrary switching laws

provided that the feedback matrix is chosen as

Gi = −LiF
−1
i , i ∈ Λ (19)

In the case where ∆Ai = 0, ∀i ∈ Λ, the closed-loop system is of the following form:

Eσx(k + 1) = Āσx(k) (20)

where Āσ = Aσ + BσGσCσ. By Theorem 3, we have

Corollary 3. Under Assumption 1, if there exist matrices X ∈ R
n×n, X > 0, Si ∈ R

n×n,

Ti ∈ R
n×n, Li ∈ R

mi×pi , symmetric matrix Y ∈ R
(n−r)×(n−r), and nonsingular matrix Fi ∈ R

pi×pi ,

such that ∀i ∈ Λ, �
Bi1 AiTi − BiLiCi − ST

i

(AiTi − BiLiCi − ST
i )T P (X, Y ) − Ti − TT

i

�
< 0 (21)

FiCi = CiTi, FiCi = CiSi (22)

where Bi1 = AiSi + ST
i AT

i − BiLiCi −CT
i LT

i BT
i − EiXET

i , P (X,Y ) is given by (12), then the closed-

loop system (20) is admissible for arbitrary switching laws provided that the feedback matrix is chosen

as (19).

According to the matrix theory, if matrix Ci, i ∈ Λ, has full row rank (without loss of generality,

we can assume that Ci, i ∈ Λ, is of full row rank), equation (22) has solutions Ti and Si if and only if

Ti = C
(1)
i FiCi + C

T⊥

i Yi1, with Yi1 ∈ R
(n−pi)×n being an arbitrary matrix (23)

Si = C
(1)
i FiCi + C

T⊥

i Yi2, with Yi2 ∈ R
(n−pi)×n being an arbitrary matrix (24)

Here the notations X(1) and X⊥ of a matrix X are stated in Section 2.

Substituting (23) and (24) into (21), we obtain the strict LMI conditions on the solution of output

feedback of system (1) when ∆Ai = 0, ∀i ∈ Λ.

Theorem 4. Under Assumption 1, if there exist matrices X ∈ R
n×n, X > 0, Yi1 ∈ R

n−pi×n,

Yi2 ∈ R
n−pi×n, Li ∈ R

mi×pi , Fi ∈ R
pi×pi , and symmetric matrix Y ∈ R

(n−r)×(n−r), such that�
Ci1 AiTi − BiLiCi − ST

i

(AiTi − BiLiCi − ST
i )T P (X, Y ) − Ti − TT

i

�
< 0, ∀i ∈ Λ (25)

where Ci1 = AiSi + ST
i AT

i −BiLiCi −CT
i LT

i BT
i −EiXET

i , and P (X,Y ), Ti and Si are given by (12),

(23) and (24), then the closed-loop system (20) is admissible for arbitrary switching laws provided that

the feedback matrices are chosen as (19).
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Remark 4. If Fi is singular for some i ∈ Λ, then one can use Gi = −Li(Fi +ρiI)−1 as a feedback

gain matrix, where ρi is a sufficiently small positive number such that Fi + ρiI is nonsingular.

6 Numerical example

Consider an SLS system of the form:�
Eσx(k + 1) = Aσx(k) + Bσuσ(k)

yσ(k) = Cσx(k)
(26)

with σ ∈ Λ = {1, 2}, E1 = E2 =

24 1 0 0

0 1 0

0 0 0

35, A1 =

24 1.4 0 0

0 0 0

1 −1 0

35, B1 =

24 1 −1

1 0

3 −2

35
C1 = [ 2 1 3 ] , A2 =

24 1.4 7 5

2 1 4

1 −1 4

35 , B2 =

24−1 4

4 2

3 −2

35 , C2 =

�
1 1 1

−1 1 1

�
(27)

It can be verified that (E1, A1) is irregular, noncausal and unstable, and (E2, A2) is unstable. By (25)

we have

X =

24 2.139 −0.313 0.433

−0.313 0.313 −0.433

0.433 −0.433 1.444

35 , Y = −6.266, F1 = 1.489, F2 =

�
1.153 −1.183

−1.544 2.33

�
L1 =

�
0.075

−0.230

�
, Y11 =

�
2.044 −1.212 0.327

1.536 1.69 −0.715

�
, Y12 =

�
−0.472 0.039 −1.396

−0.929 −0.202 0.336

�
L2 =

�
0.112 −0.797

0.487 0.123

�
, Y 21 = [ 0.268 0.886 0.541 ] , Y 22 = [−0.601 1.756 2.701 ]

From (12) and (19) we have G1, G2 and P (X, Y ):

G1 =

�
−0.051

0.155

�
, G2 =

�
1.129 0.915

−1.542 −0.836

�
, P (X, Y ) =

24 2.139 −0.313 0.433

−0.313 0.313 −0.433

0.433 −0.433 −4.822

35
Then, under the output feedback laws u1(k) = G1y(k) and u2(k) = G2y(k), the closed-loop SLS

system (26) and (27) is admissible for arbitrary switching laws.

7 Concluding remarks

In this paper, the admissibility of discrete-time SLS systems for arbitrary switching laws and

norm-bounded uncertainties is investigated. By using the LMI method, some sufficient conditions are

derived for the existence of GCLS to ensure the admissibility for arbitrary switching laws of the SLS

systems. Based on the matrix inequality condition, output feedback based robust admissible control is

designed for discrete-time SLS systems for arbitrary switching laws and norm-bounded uncertainties.

All the LMIs conditions given here are related with the system matrices directly, which can be easily

solved via efficient LMI optimization algorithms such as LMI Toolbox.
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