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Abstract A robust controller is designed by using the bilinear transformation and H∞ mixed sen-
sitivity method for bio-dissimilation process of glycerol to 1,3-propanediol. Under the controller the
system works near an optimal steady-state for the volumetric productivity of 1,3-propanediol attain-
ing its maximization. The design procedure is carried out by tuning the transformation parameter
and DC gain of the performance weighted function, which is an iterative and optimal search process.
Simulation results are presented which show that the designed robust controller not only ensures the
robust stability of the system in face of the parametric variations in the model, but also makes the
system have a favourable robust tracking performance. The validity of the proposed H∞ controller
has been tested.
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1 Introduction

Bio-dissimilation process of glycerol to 1,3-propanediol is a bioprocess with strong nonlinearity.

The experimental investigations showed that as the substrate for cell growth, glycerol is an activator

at its low concentration whereas it is a potential inhibitor at its high concentration. High glycerol

concentration means that multiple inhibitions of substrate and products occur in the system[1]. Under

given operational conditions of a relatively high dilution rate and initial glycerol concentration in feed,

decrease from high values to low values in feed substrate concentration will cause multiplicity[2]. This

is also the case for the converse. When an abrupt change in external circumstances such as initial

glycerol concentration in feed, dilution rate or pH value, oscillatory phenomena of biomass, substrate

and products can be observed[3]. Using the excess kinetic models, [4,5] described the substrate, energy

consumption and partial products formation in the bioconversion of glycerol. Considering there is a

transport process in cells ingesting substrate and secreting products through cell wall or membrane, [6,7]

introduced a continuous time delay into the model in [2] and qualitatively characterized the oscillatory

and transient phenomena occurring in experiment. [8] investigated the model-guided optimization of

glycerol to 1,3-propanediol. Significant efforts from biochemical mechanism analysis and mathematical

modeling have been made to improve the dissimilation process of glycerol, but the control of this process

was not reported.

Due to the intrinsic complexity of biological system, it is difficult to determine its exact process

model. Even if the mathematical model is built up, model parameters will vary with the working

conditions. In addition, external disturbance signals also have an important effect on the system. These

uncertain factors can deteriorate the performance of a system and lead to the instability of the process.

One efficient approach to solving such problems is to design a robust controller via the H∞ control

theory[9∼17]. The H∞ control approach integrates the uncertainty involved in model parameters and

external disturbance with the half-baked information of uncertainty to synthesize a control law which

maintains real plants to work within desired performance specifications despite the effects of uncertainty

on the system.

In this paper we propose a robust control strategy for bio-dissimilation process of glycerol to 1,3-

propanediol. Utilizing the bilinear transformation and H∞ mixed sensitivity method, a robust controller

is designed to keep the system work at an optimal steady-state for the volumetric productivity of 1,3-

propanediol attaining its maximization with a favourable tracking performance and ensure the robust

stability of the process in face of the variations in model parameters. Firstly, we shift the imaginary
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axis poles of nominal model to the right-half plane via a bilinear transformation. Then we compute

the H∞ mixed sensitivity problem for the transformed plant to find a feedback controller. Finally, we

map the above obtained controller back to the original plane via the inverse bilinear transformation

and attain the final H∞ controller. The whole design procedure is implemented by regulating the

transformation parameter and DC gain of the performance weighted function. The former is the key

parameter in placing the dominant closed-loop poles at the desired locations. And the latter determines

the steady-state tracking error of the system. Simulation results indicate that the presented controller

is valid.

2 Mathematical model

2.1 Nonlinear model

The material balance equations of continuous microbial cultures are written as follows[8] :

dX

dt
= (µ − D)X (1)

dCS

dt
= D(CSF − CS) − qSX (2)

dCPD

dt
= qPDX − DCPD (3)

dCHAc

dt
= qHAcX − DCHAc (4)

dCEtOH

dt
= qEtOHX − DCEtOH (5)

where X is the biomass, gl−1; D is the dilution rate, h−1; CSF and CS are the substrate concentrations

(glycerol) in feed and reactor, respectively, mmoll−1; CPD, CHAc and CEtOH are the concentrations of

products 1,3-propanediol, acetic acid and ethanol, respectively, mmoll−1; t is the fermentation time, h;

µ, qS , qPD, qHAc and qEtOH are the specific growth rate of cells, specific consumption rate of substrate,

specific formation rate of products 1,3-propanediol, acetic acid and ethanol, respectively, mmolg−1h−1,

which can be expressed as

µ = µm
CS

KS + CS

�
1 − CS

C∗

S

��
1 − CPD

C∗

PD

��
1 − CHAc

C∗

HAc

��
1 − CEtOH

C∗

EtOH

�
(6)

qS = mS +
µ

Y m
S

+ ∆qm
S

CS

CS + K∗

S

(7)

qPD = mPD + µY m
PD + ∆qm

PD

CS

CS + K∗

PD

(8)

qHAc = mHAc + µY m
HAc + ∆qm

HAc

CS

CS + K∗

HAc

(9)

qEtOH = qS

�
b1

c1 + DCS

+
b2

c2 + DCS

�
(10)

For Klebsiella pneunoniae cultivated under anaerobic conditions at 37◦C and pH 7.0, the maxi-

mum specific growth rate µm and the saturation constant for glycerol are 0.67h−1 and 0.28mmoll−1 ,

respectively. The critical concentrations denoted as C∗ in glycerol, 1,3-propanediol, acetic acid and

ethanol are 2039, 939.5, 1026 and 360.9mmoll−1 , respectively. In addition, the parameters b1, b2, c1

and c2 in (10) are 0.025, 5.18, 0.06 and 50.45 mmoll−1h−1, respectively, while the ones for (7), (8) and

(9) are listed in Table 1.

Table 1 Parameters in models (7)∼(9)

Substrate/products m Y m ∆qm K∗

Glycerol 2.20 0.0082 28.58 11.43

1,3-propanediol −2.69 67.69 26.59 15.50

Acetic acid −0.97 33.07 5.74 85.71

2.2 Calculation of the optimal operating point

To impose the fermentation process to run at some steady-state and maximize the volumetric

productivity of 1,3-propanediol, we present the following steady-state optimization problem
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max DCPD

s.t. (µ − D)X = 0

D(CSF − CS) − qSX = 0

qPDX − DCPD = 0

qHAcX − DCHAc = 0

qEtOHX − DCEtOH = 0

0 < D 6 0.5 (11)

0 < CSF 6 2000

From [8] we know that wash-out is easy to occur when the dilution rate is larger than 0.5h−1. So the

constraint on D is given by (11). It can be attained that the maximum volumetric productivity of 1,3-

propanediol DCPD is 114.3 mmoll−1h−1 at a dilution rate of 0.29h−1 and an initial glycerol concentra-

tion of 730.8 mmoll−1. Now the optimal steady-state operating point is (X0, CS0, CPD0, CHAc0, CEtOH0)

= (2.89, 98.1, 400.1, 116.6, 42.33).

2.3 Obtaining a linear model

The process dynamics (1)∼(5) is represented as a linear model with uncertain parameters

ẋ = Ax + Bu (12)

y = Cx (13)

where x = (X, CS, CPD, CHAc, CEtOH)T is used for the vector of states, u = D is the control input,

y = CS is the measured output, and

A =

266664 µ 0 0 0 0

−qS 0 0 0 0

qPD 0 0 0 0

qHAc 0 0 0 0

qEtOH 0 0 0 0

377775 , B =

266664 −X

CSF − CS

−CPD

−CHAc

−CEtOH

377775 , C =

266664 0

1

0

0

0

377775T

All parameters in A and B may vary within known bounds. Considering the uncertain parameters

D, X, CS, CPD, CHAc and CEtOH, we allow their changes of up to 20% around the nominal values. If

the nominal values of uncertain parameters are selected as the ones at their optimum steady-state, then

all parameters can be uniformly denoted as

p = p0(1 + 0.2∆p)

where p = D, X, CS, CPD, CHAc, CEtOH, |∆p| 6 1.

By (12) and (13), the process transfer function can be derived as

Gp(s) = C(sI − A)−1
B =

(CSF − CS)s + qSX − µ(CSF − CS)

s(s − µ)

Let CSF = CSF0, then the plant′s nominal model in a transfer function form is expressed as

G0(s) =
632.7s + 0.2713

s(s − 0.2857)

Hence, the multiplicative uncertainty can be written as

∆m =
Gp(s) − G0(s)

G0(s)

3 H∞ mixed sensitivity problem

For a general SISO feedback control system, the sensitivity function must be small in order to reject

the effect of disturbance on the output and to reduce the tracking error. The smaller the function values,



No. 1 XU Gong-Xian et al.: H∞ Control of Bio-dissimilation Process of Glycerol · · · 115

the better the tracking, whereas from a view of guaranteeing the stability of controlled plant despite

model uncertainty, a smaller complementary function implies a good robust stability. Unfortunately, it

conflicts with the previous requirement of disturbance rejection because these two quantities must add

to unity. For this reason, we need to have a tradeoff between them. Therefore, Kwakernaak proposed the

so-called mixed sensitivity problem[18]. It is formulated as the problem of finding a feedback controller

that stabilizes the closed-loop system shown in Fig. 1 and minimizes the H∞-norm of closed-loop transfer

function Tzw from the exogenous input w(w = r) to the regulated outputs z(z = [z1, z2]
T), namely

γopt = min
K

‖Tzw(s)‖∞ (14)

Fig. 1 Mixed sensitivity configuration

(14) is called the H∞ optimal control problem, where

Tzw(s) =

�
W1(s)S(s)

W2(s)T (s)

�
= P11 + P12K(I − P22K)−1P21

where S(s) = (1 + G(s)K(s))−1 and T (s) = G(s)K(s)S(s) are the sensitivity function and the com-

plementary function, respectively; G(s) is the nominal model that have no imaginary axis zeros and/or

poles; W1(s), W2(s) and P are performance weighting function, robustness weighting function and

augmented plant, respectively.

P =

�
P11 P12

P21 P22

�
=

24W1 −W1G

0 W2G

1 −G

35
where

P11 =

�
W1

0

�
, P12 =

�
−W1G

W2G

�
, P21 = 1, P22 = −G

If G, W1 and W2G have the following state-space realizations:

G =

�
Ag Bg

Cg Dg

�
, W1 =

�
Aw1

Bw1

Cw1
Dw1

�
, W2G =

�
Ag Bg

Cw2
Dw2

�
then the augmented plant has a state-space realization as follows:

P (s) =

24Ap B1 B2

C1 D11 D12

C2 D21 D22

35
where Ap =

�
Ag 0

Bw1
Cg Aw1

�
, B1 =

�
0

Bw1

�
, B2 =

�
Bg

Bw1
Dg

�
, C1 =

�
Dw1

Cg Cw1

Cw2
0

�
, D11 =

�
Dw1

0

�
,

D12 =

�
Dw1

Dg

Dw2

�
, C2 = ⌊Cg 0⌋, D21 = 1, D22 = Dg .

By [9,10], for the H∞ optimal control problem (14) to have a solution K(s) the following assump-

tions must be satisfied.
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1) the pair (Ap, B2) is stabilizable and (Ap, C2) is detectable.

2) rank(D12)=rank(u)=1 and rank(D21)=rank(y)=1.

3) rank

�
Ap − jωI B2

C1 D12

�
= n + dimu, ∀ω ∈ R, rank

�
Ap − jωI B1

C2 D21

�
= n + dimy, ∀ω ∈ R,

where n is the order of matrix Ap.

Assumption a ensures the stability of a synthesized H∞ controller. The second assumption guar-

antees the designed H∞ controller is a proper and real rational function. The final assumption is a

technical condition in mathematics that enables both P12(s) and P21(s) have no invariant zeros on the

imaginary axis[11].

4 Bilinear transformation

Before solving the H∞ optimal control problem (14), we must deal with the nominal model G0

technically to keep G0 to have no zeros and poles because G0 has a pole on the imaginary axis. An

available approach was presented in [12] to work out this nicely. Firstly, using the bilinear transformation

s =
s̃ + r1

s̃/r2 + 1
(15)

the pole of G0 on the imaginary axis can be mapped onto a circle in s̃-plane centered at

−(r1 + r2)/2

where r1, r2 < 0. Secondly, for the transformed plant T̃zw(s̃), solve the H∞ optimal control problem

γ̃opt = min
K̃

‖T̃zw(s̃)‖∞ (16)

Thirdly, map K̃(s̃) back to s-plane from s̃-plane via the inverse bilinear transformation

s̃ =
−s − r1

s/r2 − 1
(17)

Note that r1 and r2 are chosen such that G0 has no zeros and poles on the imaginary axis in

s̃-plane after a bilinear transformation. The parameter r1 is the determinant parameter for the quality

of dynamic behavior in the closed-loop system. In addition, compared with problem (14), the H∞

controller K(s) is just a suboptimal solution.

5 Weighting function selection

The selection of the weighting functions W1(s) and W2(s) observes the following basic rules

1) Choose a low-order weighting function, otherwise a high-order H∞ controller can be achieved.

2) As the perturbation bound of the uncertainty ∆m, the choice of robustness weighting function

W2(s) depends also on whether the nominal model is a strictly proper and real rational function.

Usually, W2(s) is chosen to be an improper and real rational function because most systems in the

world are strictly proper. Though W2(s) cannot be realized in state-space form, W2(s)G(s) has a

state-space realization since it is a proper structure. This ensures D12 has a full rank.

3) The performance weighting function W1(s) is usually a stable, proper and real rational function.

4) The 0 dB crossover frequency for the Bode plot of W1(s) should be below the 0 dB crossover fre-

quency for the Bode plot of W2(s). More precisely, for ∀ω ∈ R, we require σ̄(W−1
1 (jω))+σ̄(W−1

2 (jω)) >

1, where σ̄ denotes the maximum singular values of a transfer function, otherwise the performance re-

quirements will not be achievable. It is necessary to note that a strategy was proposed to determine

W1(s) by tuning its crossover frequency in [14]. If the crossover frequency of the established W2(s) is

ωc2, the crossover frequency of W1(s) is given by ωc1 = 10k−1ωc2, where k should not be larger than 1.

This fact was not shown clearly by [14].

Based on the above-mentioned rules concerning the choice of the weighting function, robustness

weighting function W2(s) can be chosen as W2(s) = s whose crossover frequency is ωc2 = 1rad/s;

performance weighting function W1(s) is a second-order filter with

W1(s) =
β(αs2 + 2ζ1ωc1

√
αs + ω2

c1)

βs2 + 2ζ2ωc1

√
βs + ω2

c1

(18)
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where β: DC gain of the filter (controls the disturbance rejection).

α = 0.5: high frequency gain (controls the response peak overshoot).

ωc1 = 0.3rad/s: filter crossover frequency.

ζ1 = 0.6, ζ2 = 0.7: damping ratios of the corner frequencies.

Obviously, W−1
1 (0) = 1/β is the steady-state tracking error, and lim

s→∞

W−1
1 (s) = 1/α = 2 is the

corresponding amplification factor of the high frequency disturbances.

6 H∞ controller design

Summarizing the previous description, the design procedure of the H∞ controller can be formulated

as follows:

1) Transform the nominal model G0(s) via the bilinear transformation (15), where r1 = −2,

r2 = −∞.

2) Design performance weighting function W̃1(s̃) by adjusting β, where β ∈ [10, 400] and the other

parameters are exposed in (18).

3) Build up the augmented plant P̃ (s̃), and find a controller K̃(s̃) if the H∞ optimal control

problem (16) has a solution. Else go to Step 2).

4) Shift back the controller K̃(s̃) to K(s) via the inverse bilinear transformation (17).

5) Return Step 1) and reset r1 until obtaining the desired performance specifications, where

r1 ∈ [−2, 0).

By using MATLAB the augmented plant P̃ (s̃) has the following state-space realization under

r1 = 0.0001 and β = 204.9:

Ãp =

2664 0.28580 0 0 0

1.00000 0.00010 0 0

−632.70 −0.27130 −0.02934 −0.00044

0 0 1.00000 0

3775 , B̃1 =

2664 0

0

1

0

3775 , B̃2 =

2664 1

0

0

0

3775
C̃1 =

�
−316.350 −0.135650 0.239888 0.089780

181.097 0.000027 0 0

�
, C̃2 = [−632.700 − 0.271300 0 0]

D̃11 =

�
0.5

0

�
, D̃12 =

�
0

632.7

�
, D̃21 = 1, D̃22 = 0

After 8 iterations γ̃opt is found to be 0.9922. The corresponding H∞ controller is

K(s) =
3835s3 + 892.2s2 + 112.6s + 0.02238

s4 + 2773000s3 + 83090s2 + 1261s + 0.5257

Fig. 2 shows the singular values Bode plots of cost functions T̃zw(s̃) and Tzw(s). As shown, both two cost

functions are all-pass, i.e., σ̄(T̃zw(jω)) = 1 and σ̄(Tzw(jω)) = 1 hold for all ω ∈ R. The results of the

singular values analysis for the sensitivity function S(s), the complementary sensitivity function T (s)

and their associated weighting functions W−1
1 (s) and W−1

2 (s) are illustrated in Fig. 3. It can be observed

that S is below its upper bound W−1
1 at a low frequency whereas T locates below its upper bound W−1

2

at a high frequency, i.e., σ̄(S(jω)) 6 W−1
1 (jω) and σ̄(T (jω)) 6 W−1

2 (jω) hold. These results not only

indicate that the closed-loop system has a favourable performance of disturbance reduction but also

guarantee the robust stability of controlled system in face of the parametric uncertainty in model.

To detect the dynamic tracking performance of the system, we consider a reference input as follows:

r(t) =

8>><>>: 98.10, 0 6 t < 10

98.10 + 0.2(t − 10)
98.10

40
, 10 6 t < 50

98.10(1 + 0.2), t > 50

Then the dynamic response curves of the output y and control input u are plotted in Fig. 4. From

Fig. 4 (a), it can be seen that the output y tracks favourably the reference input r, while Fig. 4 (b)

demonstrates the control input u behaves within the interval [0.8D0 , 1.2D0]. These results imply that

the H∞ controller K(s) has a good control action on the presented bioprocess.
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(a) (b)

Fig. 2 Singular value Bode plots of cost functions T̃zw and Tzw

(a) (b)

Fig. 3 Singular value Bode plots of S, T and their associated weighting functions W
−1
1 (s) and W

−1
2 (s)

(a) Output response (b) Input response

Fig. 4 Output (glycerol concentration) and input (dilution rate) response

7 Conclusions

In this work an H∞ control strategy for bio-dissimilation process of glycerol has been presented.

Since the nominal model has a imaginary axis pole, a robust controller that enables the bioprocess

to work around the optimal steady-state is proposed by employing an approach of integrated the

bilinear transformation and H∞ controller design. The design procedure is performed via optimizing

the parameters r1 and β, thus it possesses a strong maneuverability and can be applied to other similar

processes with uncertain parameters. The simulation shown that the designed H∞ controller is effective.
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