
Vol. 32, No. 1 ACTA AUTOMATICA SINICA January, 2006

H
∞

Filter Design for Discrete-time Systems with Missing

Measurements1)

WANG Wu YANG Fu-Wen

(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350002)
(E-mail: wangwu@fzu.edu.cn)

Abstract For packet-based transmission of data over a network, or temporary sensor failure, etc.,

data samples may be missing in the measured signals. This paper deals with the problem of H∞

filter design for linear discrete-time systems with missing measurements. The missing measurements

will happen at any sample time, and the probability of the occurrence of missing data is assumed to

be known. The main purpose is to obtain both full-and reduced-order filters such that the filter error
systems are exponentially mean-square stable and guarantee a prescribed H∞ performance in terms

of linear matrix inequality (LMI). A numerical example is provided to demonstrate the validity of
the proposed design approach.
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1 Introduction

In many industrial applications, various filter schemes have been proposed recently for systems

which assume that the measurements always contain a true signal[1]. However, due to sensor temporal

failure and networks data transmission delay or loss, a measurement sequence may contain noise only,

i.e., the measurements are not consecutive but contain missing observations, which brings on degrada-

tion of the control-system performance including instability. The problem of missing measurements has

attracted some research′s interest, see [2∼6] and references therein. The filtering problem with missing

measurements was first introduced in [2], where the missing data were modeled by a binary switch

sequence specified by a conditional probability distribution. A similar model was employed in [3, 4] to

study the filter design problem. In [5], a measurement model with missing data using incompleteness

matrix function was introduced to study the problem of state estimation and model validation. In [6],

the filtering problem with missing data was investigated using Markov chains to describe probabilistic

losses. However, the study of the systems with missing measurements has not been fully investigated

and remains to be challenging.

In this paper, along the lines of [2∼4], we model the missing measurements as a Bernoulli dis-

tributed white sequence with a known conditional probability distribution. An H∞ filtering problem

is considered for the discrete-time systems with missing measurement. Some sufficient conditions for

the existence of the full- and reduced-order filters are derived via LMI, which guarantee the filtering

error system to be exponentially mean-square asymptotically stable with an H∞-norm constraint for

all possible missing observations.

2 Problem formulation

In this paper, we consider the class of stochastic discrete-time linear systems with missing mea-

surements

x(k + 1) = Ax(k) +Bw(k)

z(k) = Lx(k) + Tw(k) (1)

y(k) = r(k)Cx(k) +Dw(k)

where x(k) ∈ ℜn is the state vector, w(k) ∈ ℜm is the noise input, which belong to l2[0,∞), y ∈ ℜr is

the measurement output, and z(k) ∈ ℜp is the signal to be estimated. A,B,C,D, L, T are known real
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matrices. The stochastic variable r(k) ∈ ℜ is a Bernoulli distributed white sequence taking the values

of 0 and 1 with

Prob{r(k) = 1} = E{r(k)} := r̄ (2)

Prob{r(k) = 0} = 1 − E{r(k)} := 1 − r̄ (3)

where r̄ is a known positive constant.

Assumption 1. The system matrix A is stable, that is, all eigenvalues are located in the unit

circle in the complex plane.

We consider the following filter of order k (k = n for the full-order filter and 1 6 k < n for

reduced-order filters) described by

x̂(k + 1) = Af x̂(k) +Bfy(k), ẑ(k) = Cf x̂(k) +Df y(k) (4)

where x̂(k) ∈ ℜk is the estimated state, ẑ(k) is an estimate for z(k), and Af , Bf , Cf and Df are filter

parameters to be determined.

Define the augmented state vector

xf (k) =

�
x(k)

x̂(k)

�
(5)

the augmented system formed by system (1) and the filter (4) can be expressed by

xf (k + 1) = Aclxf (k) +Bclw(k), zf (k) = Cclxf (k) +Dclw(k) (6)

where the filtering error output is denoted by zf (k) = z(k) − ẑ(k), and

Acl = Acl0 + (r(k) − r̄)Acl1, Acl0 =

�
A 0

r̄BfC Af

�
, Acl1 =

�
0 0

BfC 0

�
, Bcl =

�
B

BfD

�
Ccl = Ccl0 + (r(k) − r̄)Ccl1, Ccl0 = ⌊L− r̄DfC − Cf⌋, Ccl1 = ⌊−DfC 0⌋, Dcl = T −DfD

Our objective is to design the full- and reduced-order filters of form (4) such that

1) The filtering error system (6) is exponentially mean-square asymptotically stable, i.e., there

exist constants α > 1 and 0 < τ < 1, with w(k) = 0, such that

E{‖xf (k)‖} 6 ατkE{‖xf (0)‖2} (7)

2) Under zero-initial condition, the filtering error output zf (k) satisfies

∞X
k=0

E{‖zf (k)‖2} < γ2
∞X

k=0

E{‖w(k)‖2} (8)

for all nonzero w(k) ∈ l2[0,∞) and a given positive constant γ.

3 H∞ filter analysis

Theorem 1. Given a scalar γ > 0 and the filter parameters Af , Bf , Cf and Df , the filtering

error system (6) is exponentially mean-square asymptotically stable with an H∞ noise attenuation level

bound γ, if there exists a positive definite matrix P = PT > 0 satisfying26666664 −P 0 AT
cl0P CT

cl0 aAT
cl1P aCT

cl1

0 −γ2I BT
clP DT

cl 0 0

PAcl0 PBcl −P 0 0 0

Ccl0 Dcl 0 −I 0 0

aPAcl1 0 0 0 −aP 0

aCcl1 0 0 0 0 −aI

37777775 < 0 (9)

where a = (1 − r̄)r̄.
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Proof. Define the Lyapunov functional as

V (k) = x
T
f (k)Pxf (k) (10)

where P is a positive definite matrix. The difference between the Lyapunov functional (10) from (6) is

obtained as follows.

E{V (k + 1)|x(k), · · · , x(0), x̂(k), · · · , x̂(0)} − V (k) = (Acl0xf (k) +Bclw(k))TP (Acl0xf (k)+

Bclw(k)) + E(r(k) − r̄)2xT
f (k)AT

cl1PAcl1xf (k) − x
T
f (k)Pxf (k) = (Acl0xf (k)+

Bclw(k))TP (Acl0xf (k) +Bclw(k)) + axT
f (k)AT

cl1PAcl1xf (k) − x
T
f (k)Pxf (k) (11)

where a = E(r(k) − r̄)2 = (1 − r̄)r̄. When w(k) = 0, we have

E{V (k + 1)|x(k), · · · ,x(0),xf (k), · · · ,xf (0)} − V (k) =

x
T
f (k)(AT

cl0PAcl0 + aAT
cl1PAcl1 − P )xf (k) = x

T
f (k), · · · ,xf (0) (12)

By the Schur complement, LMI (9) implies Λ < 0 . Then we have

E{V (k + 1)|x(k), · · · ,x(0), x̂(k), · · · , x̂(0)} − V (k) 6 −λmin(−Λ)xT
f (k)xf (k) 6 −αx

T
f (k)xf (k) (13)

where 0 < α < λmin(−Λ).

We can find a scalar α such that 0 < α < λmax(P ). Then

E{V (k + 1)|x(k), · · · ,x(0), x̂(k), · · · , x̂(0)} − V (k) 6 −αV (k)/λmax(P ) = −ψV (k) (14)

where 0 < ψ = α/λmax(P ) < 1.

From Lemma 1 of [7], we can conclude that the filtering error system (6) is exponentially mean-

square asymptotically stable.

Next, for any nonzero w(k), it follows from (6) and (11) that

E{V (k + 1)} − E{V (k)} + E{zT
f (k)zf (k)} − γ2E{wT(k)w(k)} =�

xf (k)

w(k)

�T�
AT

cl0PAcl0+aAT
cl1PAcl1−P+CT

cl0Ccl0+aCT
cl1Ccl1 AT

cl0PBcl+C
T
cl0Dcl

BT
clPAcl0+DT

clCcl0 DT
clDcl+B

T
clPBcl−γ

2I

��
xf (k)

w(k)

�
(15)

By the Schur complement, LMI (9) guarantees that

E{V (k + 1)} − E{V (k)} + E{zT
f (k)zf (k)} − γ2E{wT(k)w(k)} < 0 (16)

Now, summing (16) from 0 to ∞ with respect to k yields

∞X
k=0

(E{V (k + 1)} − E{V (k)} + E{zT
f (k)zf (k)} − γ2E{wT(k)w(k)}) < 0 (17)

Since the filtering system is exponentially mean-square asymptotically stable, it is straightforward to

see that
∞X

k=0

E{‖zf (k)‖2} < γ2
∞X

k=0

E{‖w(k)‖2} (18)

under the zero initial condition. This completes the proof. �

Theorem 2. Given a scalar γ > 0 and the filter parameters Af , Bf , Cf and Df , the filtering

error system (6) is exponentially mean-square asymptotically stable with an H∞ noise attenuation level

bound γ, if there exist matrices P = PT > 0 and G satisfying26666664 −P 0 AT
cl0G CT

cl0 aAT
cl1G aCT

cl1

0 −γ2I BT
clG DT

cl 0 0

GTAcl0 GTBcl P −G−GT 0 0 0

Ccl0 Dcl 0 −I 0 0

aGTAcl1 0 0 0 a(P −G−GT) 0

aCcl1 0 0 0 0 −aI

37777775 < 0 (19)
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where a = (1 − r̄)r̄.

Remark 1. Theorem 2 is equivalent to Theorem 1. The only difference between them lies in

the fact that Theorem 2 eliminates the coupling between Lyapunov function and system matrices via

replacing the Lyapunov matrix P by G, where the extra variable G does not present any structural

constraint such as symmetry[8].

4 H∞ filter design

In order to solve the filtering problem for the discrete-time system with missing measurements,

some linearization procedures have to be adopted in this section. By using the standard linearization

procedures proposed in [9], the full-order H∞ filter in the following Theorem 3 can be obtained from (9).

And we can get the reduced-order H∞ filter in the following Theorem 4 from (19) via the linearization

procedures proposed in [8].

4.1 Full-order filtering

Theorem 3. Given a scalar γ > 0, the filtering error system (6) is exponentially mean-square

asymptotically stable with an H∞-norm constraint (8) is achieved for all nonzero w(k), if there exist

positive definite matrices R = RT > 0 and Y = Y T > 0, real matrices M,N, Z and Df such that266666666666664
−R ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−R −Y ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 −γ2I ∗ ∗ ∗ ∗ ∗ ∗

RA RA RB −R ∗ ∗ ∗ ∗ ∗

Y A+ r̄ZC +M YA+ r̄ZC Y B + ZD −R −Y ∗ ∗ ∗ ∗

L− r̄DfC −N L− r̄DfC T −DfD 0 −I ∗ ∗ ∗ ∗

0 0 0 0 0 0 −aR ∗ ∗

aZC aZC 0 0 0 0 −aR −aY ∗

−aDfC −aDfC 0 0 0 0 0 0 −aI

377777777777775 < 0 (20)

where a = (1 − r̄)r̄.

Moreover, the filter parameters are given by

Af = (R− Y )−1M, Bf = (R− Y )−1Z, Cf = N, Df = Df

4.2 Reduced-order filtering
Theorem 4. Given a scalar γ > 0, the filtering error system (6) is exponentially mean-square

asymptotically stable with an H∞-norm constraint (8) is achieved for all nonzero w(k), if there exist

positive definite matrices P1 = PT
1 > 0 and P3 = PT

3 > 0, real matrices P2, V1, V2, V3, Âf , B̂f , Ĉf , D̂f

such that26666666666666666664
−P1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−PT
2 −P3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 −γ2I ∗ ∗ ∗ ∗ ∗ ∗

V T
1 A + r̄EB̂f C EÂf V T

1 B + EB̂f D P1−V1−V T
1 ∗ ∗ ∗ ∗ ∗

V T
3 A + r̄B̂f C Âf V T

3 B + B̂f D PT
2 −V T

2 ET
−V T

3 P3−V2−V T
2 ∗ ∗ ∗ ∗

L−r̄D̂f C −Ĉf T −D̂f D 0 0 −I ∗ ∗ ∗

EB̂f C 0 0 0 0 0 a(P1−V1−V T
1 ) ∗ ∗

aB̂f C 0 0 0 0 0 a(PT
2 −V T

2 ET
−V T

3 ) a(P3−V2−V T
2 ) ∗

−aD̂f C 0 0 0 0 0 0 0 −aI

37777777777777777775< 0

(21)

where a = (1 − r̄)r̄, E =

�
Ik∗k

0(n−k)∗k

�
.

Moreover, the filter parameters are given by

Af = V −1
2 Âf , Bf = V −1

2 B̂f , Cf = Ĉf , Df = D̂f

5 An illustrative example

In this section, we shall present an example to demonstrate the effectiveness and applicability of

the proposed algorithms. Consider the system described by (1) with parameters as follows

A =

�
0 0.3

−0.2 0.4

�
, B =

�
0

1

�
, C = [1 0], D = 1, L = [1 2], T = 0
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and r̄ = 0.8.

First, consider the full-order filter design problem. By solving the LMI (20) in Theorem 3 by

Matlab LMI Toolbox, the minimum noise attenuation level bound is obtained with γ∗ = 0.4102 and

the corresponding filter parameters are given by

Af =

�
−0.0091 0.2847

−0.9838 0.4309

�
, Bf =

�
0.0209

0.9581

�
, Cf = [0.9945 1.9829], Df = 0.0221

Next, we consider the reduced-order filter design problem. By solving the LMI (21) in Theorem

4, we obtain the minimum noise attenuation level bound with γ∗ = 2.5187 and the corresponding filter

parameters are given by

Af = −0.3158, Bf = −0.4147, Cf = −1.0751, Df = 0.6305

6 Conclusion

The problem of H∞ filter design has been considered in this paper for stochastic discrete-time

systems with missing measurements. Both full- and reduced-order filters have been designed in terms

of the Matlab LMI toolbox, which guarantee the filtering error system to be exponentially mean-square

asymptotically stable and the filtering error output to satisfy H∞ performance constraint for all possible

missing observations.
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