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Abstract This paper is concerned with the problem of robust sliding-mode filtering for a class of
uncertain nonlinear discrete-time systems with time-delays. The nonlinearities are assumed to satisfy
global Lipschitz conditions and parameter uncertainties are supposed to reside in a polytope. The
resulting filter is of the Luenberger type with the discontinuous form. A sufficient condition with
delay-dependency is proposed for existence of such a filter. And the desired filter can be found by
solving a set of matrix inequalities. The resulting filter adapts for the systems whose noise input is
real functional bounded and not be required to be energy bounded. A numerical example is given to
illustrate the effectiveness of the proposed design method.
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1 Introduction

The robust filtering problem has received considerable attention for the past decades. The current
efforts on this issue mainly focus on Kalman filtering and H∞ filtering. In using Kalman filtering,
the system′s disturbances are assumed to be Gaussian noise with known statistics. When the noise

sources are arbitrary signals with bounded energy, the H∞ filtering approach provides a guaranteed
noise attention level. On the other hand, time-delay and nonlinearity are often encountered in various
industrial systems, such as electrical networks, rolling mills, chemical processes, nuclear reactors, etc.
The existence of time-delay is often a source of poor performance, even instability[1], while nonlinearity
always brings much difficulty for the system stabilization, filtering, fault detection, etc. So, the study of
the robust filtering for the nonlinear time-delay system has great theoretical and practical importance.
For the past few years, a rich literature has been dedicated to the time-delay system filtering[2∼4].

However, they all deal with the linear system, and when the system is nonlinear the design of robust
filter turns out to be much more difficult. To the best of the author′s knowledge, so far, the related
results arising from nonlinear systems with time-delay are very limited.

This paper is interested in robust filtering for uncertain nonlinear discrete-time systems with time-
delays. We design a new filter, namely the sliding-mode filter, which has a special function of dealing
with the system nonlinearities and uncertainties because there is a nonlinear discontinuous term injected

into the filter depending on the state estimation error and their differential. This kind of filter is more
robust than the aforementioned Kalman filter and H∞ filter, as this discontinuous term enables the
filter to reject the effect of system nonlinearity and to drive the trajectories of the filter so that the
state estimation error vector is forced onto and subsequently remains on a sliding surface defined in
the filtering error space[5∼7]. The motion on this surface is referred to as the sliding mode. Once the
sliding mode is achieved the system will experience a reduced-order motion, which is insensitive to
system parameter uncertainties and external disturbance. This is an inherent property of the sliding

mode control[8]. Moreover, different from Kalman and H∞ filtering, the sliding mode filtering does not
require the system′s disturbances ω(t) to be Gaussian noise with known statistics or bounded energy,
and only positive real function bounded is required, i.e., satisfies ‖ω(t)‖ 6 ρ(t), where ρ(t) is a known
positive real function.

2 Problem formulation

Consider the following uncertain nonlinear discrete-time system with multiple delays in the state

x(k + 1) = A0x(k) +

qX
j=1

Ajx(k − dj) + Ff(xk) +Bω(k)
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y(k) = C0x(k) +

qX
j=1

Cjx(k − dj) +Gg(xk) +Dω(k)

x(k) = φ(k), k = −2d̄,−2d̄+ 1, · · · , 0, d̄ = max{dj , j = 1, 2, · · · , q} (1)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

q is the measured output, ω(k) ∈ R
l is the noise input,

x(k) = φ(k) : k = −2d̄, −2d̄+1, · · · , 0, is the given initial condition sequence, dj > 0, j = 1, 2, · · · , q, are

the known constant time delays; f(xk) := f(x, xd1, · · · , xdq) and g(xk) := g(x, xd1, · · · , xdq) represent
system nonlinearities. For convenience, we let xk := {x(k), x(k − d1), · · · , x(k − dq)}.

The system matrices reside anywhere in the uncertainty polytope Ω defined by

Ω := [A0, A1, · · · , Aq, F,B,C0, C1, · · · , Cq , G,D] ∈ Σ (2)

where Σ is a given convex bounded polyhedral domain

Σ :=

(
Ω(η) =

lX
j=1

ηjΩj ; 0 6 ηj 6 1,

lX
j=1

ηj = 1

)
and the l vertices of the polytope are described by

Ωj := [A
(j)
0 , A

(j)
1 , · · · , A(j)

q , F
(j)
, B

(j)
, C

(j)
0 , C

(j)
1 , · · · , C(j)

q , G
(j)
,D

(j)]

Throughout this paper, we make the following assumptions.
Assumption 1. System (1) is asymptotically stable.
Assumption 2. There exists a positive real function ρ(k) such that ω(k) satisfies ‖ω(k)‖ 6 ρ(k).
Assumption 3. The nonlinearities f1(xk), f2(xk) satisfy the followings.
1) f(0, 0, · · · , 0) = 0 and g(0, 0, · · · , 0) = 0;
2) (Lipschitz conditions) There exist known real matrices Mj , Nj(j = 1, 2, · · · , q) with appropriate

dimensions such that for all x0, x1, · · · , xq ∈ R
n and y0, y1, · · · , yq ∈ R

n the follwings hold

‖f(x0, x1, · · · , xq) − f(y0, y1, · · · , yq)‖ 6

qX
j=0

‖Mj(xj − yj)‖

‖g(x0, x1, · · · , xq) − g(y0, y1, · · · , yq)‖ 6

qX
j=0

‖Nj(xj − yj)‖

Our objective is to design a full order sliding-mode filter in the following form

x̂(k + 1) = Af x̂(k) +Hf (y(k) − ŷ(k)) + Ff(x̂k) +Bv(k), x̂(0) = 0

ŷ(k) = C0x̂(k) +Gg(x̂k) (3)

where x̂(k) is the state estimate, the real matrices Af ∈ R
n×n and Hf ∈ R

n×p are filter parameters to
be specified. w(k) ∈ R

l is a discontinuous feedback compensation control.
Augmenting the model of (1) to include the states of the filter, we obtain the filtering error system

as

ζ(k + 1) = Ā0ζ(k) +

qX
j=1

Ājζ(k − dj) +H(h(xk) − h(x̂k)) + H̄h(xk) + B̄ω(k) −KnBv(k) (4)

where e(k) := x(k) − x̂(k), ζ(k) := col{x(k), e(k)} and

h(xk) :=

�
f(xk)
g(xk)

�
, Kn =

�
0
In

�
, H =

�
0 0
F −HfG

�
, H̄ =

�
F 0
0 0

�
, B̄ =

�
B

B −HfD

�
Ā0 =

�
A0 0

A0 − Af Af −HfC0

�
, Āj =

�
Aj 0

Aj −HfCj 0

�
Therefore, the robust filtering design problem to be addressed in this paper is stated as: For

system (1) whose noise input ω(k) is assumed to be an arbitrary signal satisfying Assumption 2, design
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a full-order sliding-mode filter in the form of (3) such that the filtering error system (4) is robust
asymptotically stable.

The following lemma plays a key role in deriving our main results.

Lemma 1[2]. For vectors a, b and matrices N,X, Y, Z with compatible dimensions, if

�
X Y

Y T Z

�
>

0 then

−2a
T
Nb 6

�
a

b

�T �
X Y −N

Y T −NT Z

� �
a

b

�
(5)

3 Main results

In this section, we shall design the sliding mode filter in the form of (3). First, we design the

following discontinuous feedback compensation control

ν(k) = (KnB)+
�
ασ(k) + ρ(k)‖B̄‖

σ(k)

‖σ(k)‖

�
(6)

where α > 0 is a constant, and ρ(k) is defined in Assumption 2. Correspondingly, we chose the following

switching function[9]:
σ(k) = K

T
2nPψ(k) (7)

The following theorem is essential for solving the sliding-mode filtering problem.
Theorem 1. Consider system (1) with Assumptions 1, 2 and 3. The filtering error system

(4) is exponentially stable for all the points in the uncertainty polytope, if there exist matrices 0 <

P1 ∈ R
2n×2n, P2 ∈ R

2n×2n, P3 ∈ R
2n×2n, P =

�
P1 0
P2 P3

�
, Xj =

�
X1j X2j

∗ X3j

�
, Yj =

�
Y1j

Y2j

�
, Xij ∈

R
2n×2n(i = 1, 2, 3), Ylj ∈ R

2n×2n(l = 1, 2), 0 < Qj ∈ R
2n×2n, Zj ∈ R

2n×2n(j = 1, 2, · · · , q) and scalars
ε1 > 0, ε2 > 0, such that the following matrix inequalities hold:266664 Π̄11 Π̄12 −Y T

1col PT
2 H

T PT
2 H̄

T

∗ Π̄22 −Y T
2col PT

3 H
T PT

3 H̄
T

∗ ∗ εdiaMdia −Qdia 0 0
∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ −ε2I

377775(i)

< 0, i = 1, 2, · · · , l (8)�
Xj Yj

∗ Zj

�
> 0, ∀j = 1, 2, · · · , q (9)

where

ZΣ :=

qX
j=1

djZj , QΣ :=

qX
j=1

Qj , Qdia := diag{Q1, Q2, · · · , Qq}, Mdia := diag{Ψ1,Ψ2, · · · ,Ψq}

εdia := (m+ 1)

�
ε2In 0

0 ε1In

�
, Ψj :=

�
MT

j Mj +NT
j Nj 0

0 MT
j Mj +NT

j Nj

�
(j = 0, 1, · · · , q)

Π̄11 := 2(Ā0 +

qX
j=0

Āj)P2 + εdiaΨ0 +QΣ +

qX
j=1

[djX1j + (Y1j − P
T
2 Ā

T
j ) + (Y T

1j − ĀjP2)]

Π̄12 := P1−P
T
2 +(Ā0+

qX
j=1

Āj)P3+

qX
j=1

d̄jX2j +

qX
j=1

(Y T
2j−ĀjP3), Π̄22 := −PT

3 −P3+

qX
j=1

d̄jX3j +ZΣ

Y1col := col{(Y T
11 − Ā

T
1 P2), (Y

T
12 − Ā

T
2 P2), · · · , (Y

T
1q − Ā

T
q P2)}

Y2col := col{(Y T
21 − Ā

T
1 P3), (Y

T
22 − Ā

T
2 P3), · · · , (Y

T
2q − Ā

T
q P3)}

Due to space limitation, the proof of this theorem is omitted.

Now, we are in position to solve the sliding-mode filter synthesis problem based on the condition
obtained in Theorem 1. The following theorem provides a sufficient condition for the existence of such
a filter for system (1).

Theorem 2. Consider system (1) with Assumptions 1, 2, and 3. An admissible robust sliding
mode filter in the form (3) exists, if there exist matrices 0 < W1 ∈ R

2n×2n, W2,W3 ∈ R
2n×2n, 0 < Q̄j ∈
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R
2n×2n, Z̄j ∈ R

2n×2n, W1 =

�
W11 0
0 W12

�
, X̄j =

�
X̄1j X̄2j

∗ X̄3j

�
, Yj =

�
Ȳ1j

Ȳ2j

�
, X̄ij ∈ R

2n×2n(i = 1, 2, 3),

Ȳlj ∈ R
2n×2n(l = 1, 2), (j = 1, 2, · · · , q), ∆1 ∈ R

n×p and scalars ε1 > 0, ε2 > 0, such that (10)∼(12)
hold 266664 [1, 1] [1, 2] −Ȳ T

1col 0 0
∗ [2, 2] −Ȳ T

2col (W1H)T H̄T

∗ ∗ ΛdiaMdia − Q̄dia 0 0
∗ ∗ ∗ −ε1W

T
1 W1 0

∗ ∗ ∗ ∗ −ε2I2n

377775(i)

< 0, i = 1, 2, · · · , l (10)24 X̄1j X̄2j Ȳ1j

∗ X̄3j Ȳ2j

∗ ∗ Zj

35 > 0, ∀j = 1, 2, · · · , q (11)

W2 = W3 (12)

Moreover, the filter parameter matrices Af and Hf are given by

Af = W
−1
12 ∆1, Hf = W

−1
12 ∆2 (13)

where

Λdia := diag

qz }| {
{ε̄dia, ε̄dia, · · · , ε̄dia}, Q̄Σ :=

qX
j=1

W1QjW1 =

qX
j=1

Q̄j , Z̄Σ :=

qX
j=1

djW
T
2 ZjW2 =

qX
j=1

djZ̄j

[1, 1] := W2+WT
2 +

qX
j=1

(djX̄1j +Ȳ1j +Ȳ T
1j)+ε̄diaΨ0+Q̄Σ+Z̄Σ, [2, 2] := −W3 −W

T
3 +

qX
j=1

djX̄3j +Z̄Σ

[1, 2] :=W3+W1Ā0−W
T
2 +

qX
j=1

(dX̄2j + Ȳ
T
2j) + Z̄Σ, Q̄dia = W1diaQdiaW1dia := diag{Q̄1, Q̄2, · · · , Q̄q}

ε̄dia := W1εdiaW1, Ȳ1col := col{Ȳ T
11, Ȳ

T
12, · · · , Ȳ

T
1q}, Ȳ2col := col{(Ȳ T

21 −W1Ā1), · · · , (Ȳ
T
2q −W1Āq)}

W1Ā=

�
W11A0 0

W12A0−∆1 ∆1−∆2C0

�
,W1H=

�
0 0

W12F −∆2G

�
,W1Āj =

�
W11Aj 0

∆1−∆2Cj 0

�
(j=1, 2, · · · , q)

4 Numerical example

Consider the uncertain nonlinear time-delay system (1) with parameters as follows.

A0 =

�
−4 0

1 −5 + δ1

�
, A1 =

�
−0.2 0

0.1 −0.3 + δ2

�
, A2 =

�
0 0.2

−0.4 −0.3 + δ2

�
, B =

�
0.8

1 + δ2

�
F =

�
1 0
0 1

�
, G = [0.5 0.8], Mj =

�
0.2 0
0.1 0.3

�
, N j = [0.5 0.4], (j = 0, 1, 2)

C0 = [1 1], C1 = [0.2 0.5], C2 = [0.3 0.4], D = 1 + δ2, −0.5 6 δ1 6 0.5, −0.1 6 δ2 6 0.1

Assuming d1 = 1, d2 = 2 and by solving (10)∼(13) in Theorem 2, we obtain the parameter matrices
Af and Hf as follows:

Af =

�
0.2037 0.4586
−0.2414 −0.3308

�
, Hf =

�
−0.3647
0.1663

�
, P =

�
P1 0
P2 P3

�
= W

−1

W1 =

2664 0.4662 0.3260 0 0
−0.1379 0.1257 0 0

0 0 0.3302 −0.3028
0 0 −0.1439 0.2847

3775 , W2 =W3=

2664 0.2337 0.1825 −0.3325 0.3379
0.2729 −0.5466 0.3958 −0.3641

−0.6590 −0.8410 0.7104 0.2535
−0.3322 0.6612 −0.3230 −0.1251

3775
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5 Conclusion

A new robust sliding-mode filter has been designed for a class of uncertain nonlinear discrete-time
systems with time-delays. The filter has Luenberger type with a discontinuous feedback compensation

control injected into it. A sufficient condition with delay-dependency has been proposed for the existence
of such a filter, and desired filter can be found by solving a set of matrix inequalities. A numerical
example has been given to demonstrate the effectiveness of the proposed design methods.
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