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Abstract The property of dichotomy of interconnected second-order pendulum-like systems with
multiple equilibria is investigated. This interconnection can be viewed as harmonic control of inde-

pendent sub-systems. Linear interconnections and a class of input and output interconnections are
considered in this paper. The effects of input and output interconnections are shown through a per-

mutation matrix. Frequency domain and linear matrix inequality (LMI) conditions of dichotomy of

interconnected pendulum-like systems are derived. It is shown that global properties of two coupled
systems can be changed significantly through interconnections. Examples are given to illustrate the

results.
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1 Introduction

In the area of large scale systems theory, decentralized control plays an important role in stability

synthesis problems[1]. Its main characteristics are that there are no information interchanges among

control stations, the control structure is simple, the closed-loop systems are always connectively stable[1]

(systems are still stable under structural perturbations). For stability and reliability of systems, this

kind of result is obviously satisfactong. However, conservativeness is resulted in since every control

station takes decision only by itself, and interconnections are always viewed as disadvantages. In real

life, we can always see the examples of collaborations among different individuals. How to realize the

similar collaborative actions among independent subsystems becomes more and more important in the

area of systems theory[2]. Recently, some interesting results have appeared to this line. For example,

applications of small gain theorem to strengthen stability degree of interconnected systems were studied

in [3]; coupled nonlinear systems were discussed in [4∼6]. It was pointed out that in order to stabilize

an interconnected system under a special structure, some subsystems must be unstable. These results

have shown the positive effects of interconnections.

This paper is devoted to studying the property of coupled second-order pendulum-like systems and

discussing the effects of interconnections. The pendulum-like system which has important applications

in phase-lock loops[7,8] is a special nonlinear system with infinite equilibria. For this kind of systems,

the characteristics of solutions are more complicated than those systems with single equilibrium. The

simplest pendulum-like system is the second-order mathematical pendulum equation which was first

studied by F.Tricomi (1933)[9]. Then it was generalized to higher-order systems with periodic functions

and new methods based on Lyapunov functions were established[10,11]. In this paper, we establish

frequency and time domain criteria of dichotomy of interconnected second-order pendulum-like systems

and discuss the effects of linear interconnections and a class of input and output coupling.

2 Interconnected pendulum-like systems

Let us consider two second-order pendulum-like systems represented by�
η̇1 = −a1η1 − ϕ1(σ1)

σ̇1 = η1

(1)�
η̇2 = −a2η2 − ϕ2(σ2)

σ̇2 = η2

(2)
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where ai are positive numbers, ϕi : R → R are continuously differentiable on R. We suppose also that

for all σ ∈ R the following equations are true:

(∃∆i ∈ R)(∀σi ∈ R) : ϕi(σi + ∆i) = ϕi(σi) i = 1, 2

where ∆i are called the period in σ of nonlinearities ϕi(σi).

The interconnected system composed of (1) and (2) is described as follows:�
η̇ = Aη + Bϕ(σ)

σ̇ = Cη
(3)

where η =

�
η1

η2

�
, σ =

�
σ1

σ2

�
, ϕ(σ) =

�
ϕ1(σ1)

ϕ2(σ2)

�
, A =

�
−a1 a12

a21 −a2

�
, B =

�
−1 0

0 −1

�
, C =

�
1 0

0 1

�
.

Here, the coupled relation between the two sub-systems is expressed by two certain numbers a12 and

a21. The corresponding transfer function from ϕ to σ̇ is defined as follows

K(s) = C(sI − A)−1
B (4)

Definition[11]. System (3) is said to be dichotomous if every its bounded solution is convergent.

From the definition of dichotomy, we know that the existence of chaotic attractors and limit cycles

is impossible in dichotomous systems. It follows that every solution of such systems is either convergent

to a certain equilibrium point or goes to infinity. Then, the corresponding frequency-domain criterion

guaranteeing dichotomy of interconnected system (3) is given by [4,11].

Let us replace ϕ in system (3) with ψ =

�
ϕ1(σ2)

ϕ2(σ1)

�
, then we can get a class of interconnected

system with input and output coupling as follows:�
η̇ = Aη + Bψ(σ)

σ̇ = Cη
(5)

3 Main results

Now, we consider the property of dichotomy of interconnected system (5). Let P =

�
0 1

1 0

�
and

z = Pσ. System (5) can be converted to�
η̇ = Aη + Bϕ(z)

ż = PCη
(6)

where ϕ(z) =

�
ϕ1(z1)

ϕ2(z2)

�
= ψ(σ). It is obvious that systems (6) and (5) have the same dichotomy and

by (6) the transfer function from ϕ(z) to ż is PK(s). Thus we can get the following theorem.

Theorem 1. Let the matrix A have no pure imaginary eigenvalues. Suppose the pair (A, B) is

controllable and the pair (A, C) is observable. Suppose also ϕi has a finite number of isolated zeros in

one period. If there exist diagonal matrices ε = diag{ε1, ε2} > 0 and κ = diag{κ1, κ2} 6= 0 such that

the following frequency-domain inequality is true.

Re{κPK(iω) + K
∗(iω)P ∗

εPK(iω)} 6 0, ∀ω ∈ R (7)

Then system (5) is dichotomous.

In virtue of KYP Lemma given by [12], the frequency-domain condition (7) can be converted to

LMI.

Corollary. Let the matrix A has no pure imaginary eigenvalues. Suppose the pair (A, B) is

controllable, the pair (A, C) is observable. Suppose also ϕi has a finite number of isolated zeros in one

period. If there exist diagonal matrices ε = diag{ε1, ε2} > 0, κ = diag{κ1, κ2} 6= 0 and a symmetric

matrix X such that the following LMI is true:"
C∗P ∗εPC 1

2
C∗Pκ

1

2
κPC 0

#
+

�
XA + A∗X XB

B∗X 0

�
6 0 (8)
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then system (5) is dichotomous.

Theorem 2. Parameters a12 and a21 can always be chosen such that the interconnected system

(3) or system (5) is dichotomous.

4 Numerical example

Consider the second-order pendulum-like systems defined as (1) and (2), where ϕi(σi) = −(ai +

di cosσi)(ci +di sinσi), i = 1, 2. In what follows, we consider the dichotomy of interconnected systems.

Firstly, we consider system (5). Let c1 = 0.2, d1 = 1, c2 = 0.1, d2 = 0.9, a1 = 2, a2 = 1, A =�
−a1 a12

a21 −a2

�
. It follows from the qualitative analysis method given by [13] that solutions of subsystems

(1) and (2) are all convergent (subsystems (1) and (2) are dichotomous). If we choose a12 = 3 and

a21 = 0, then it is easy to show that the conditions of Corollary 3.1 are not fulfilled. The curves and

phase portraits of solution σ and state variable η for system (5) with the initial value η0 = [2 − 1]∗

and σ0 = [4 − 2]∗ are shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4, respectively. It follows that the

interconnected system (5) has a certain periodic orbit. Thus system is not dichotomous.

Let a21 = 0.5 and P be a unit matrix. It means that input and output coupling in system (5) is

disappeared. Then there exist numbers κ1 = −1, κ2 = −3, ε1 = 0.2, and ε2 = 0.1 such that inequality

(8) is satisfied. It follows that the interconnected system (3) is dichotomous. Referring to Fig. 5 and

Fig. 6, the curves of solution σ and state variable η for system (3) with the initial value η0 = [2 − 1]∗

and σ0 = [4 − 2]∗ are convergent respectively. If the input and output coupling works in system (3),

the phase portrait of solution σ and state variable η for interconnected system (5) are shown in Fig. 7

and Fig. 8. The solution σ is unbounded. However, as shown in Fig. 7 and Fig. 8, the state variable η

appears to be a kind of chaotic phenomenon as t → +∞. It is shown that global properties of coupled

systems can be changed significantly through input and output interconnection.

Fig. 1 The curve of solution σ for system (5) Fig. 2 The phase portrait of solution σ for (5)

Fig. 3 The curve of state variable η for (5) Fig. 4 The phase portrait of state variable η for (5)
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Fig. 5 The curve of σ for (3) Fig. 6 The curve of η for (3)

Fig. 7 The phase portrait of σ for (5) Fig. 8 The phase portrait of η for (5)

5 Conclusion

In this paper, the effects of interconnections between two independent second-order pendulum-like

systems have been investigated. Linear interconnection and a class of input and output interconnections

have been involved. Some frequency domain and LMI conditions of dichotomy for interconnected

pendulum-like systems have been established. Examples show that the input and output interchange

can result in great changes in some practical systems. For example, chaotic phenomenon in partial

variables may appear by adding interconnections between two independent second-order pendulum-like

systems which are dichotomous. Since the solution σ is unbounded, there is no chaotic phenomenon

in plane phase space. However, chaotic phenomenon appears on the cylindrical surface of cylindrical

phase space, called the chaos on cylindrical surface, which was never studied. It shows the complexity

of physical property in concrete systems even if they are dichotomous. This also indicates that it is

possible for the existence of chaotic attractors in pendulum-like systems.
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