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Abstract The robust stability of a class of Hopfield neural networks with multiple delays and

parameter perturbations is analyzed. The sufficient conditions for the global robust stability of

equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions

take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently.

Furthermore, all the results are obtained without assuming the differentiability and monotonicity of

activation functions. From the viewpoint of system analysis, our results provide sufficient conditions

for the global robust stability in a manner that they specify the size of perturbation that Hopfield

neural networks can endure when the structure of the network is given. On the other hand, from

the viewpoint of system synthesis, our results can answer how to choose the parameters of neural

networks to endure a given perturbation.
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1 Introduction

The investigation and application of Hopfield neural networks with symmetric interconnecting

structure have extended to many fields and gained abundant fruits[1,2] in classification, parallel com-

puting, associative memory, especially in solving some optimization problems[3]. However, it is impos-

sible to realize the absolute symmetry of interconnecting structure due to the influences of parameter

perturbations. On the other hand, time delay occurs inevitably and may bring oscillation during the

implementation process of Hopfield neural networks[4]. Hence, it is important to consider the influ-

ences of time delay and interconnecting structure when we analyze the stability of Hopfield neural

networks. [5,6] investigated respectively a class of Hopfield neural network models with special inter-

connecting structure, but they imposed strict restrictions on interconnecting structure and did not take

into account the influences of time delays and parameter perturbations. [7] analyzed the parameter

perturbations of interconnecting structure in detail, but the interconnecting matrix T was supposed

to be symmetric after perturbation, which is very difficult to realize in practical application. To solve

the above problems effectively, this paper will study the robust stability of a class of delayed Hopfield

neural network models with parameter perturbations, which involve the perturbations of self-feedback

terms and the perturbations of interconnecting structure. Some criteria for the global robust stability

of Hopfield neural networks will be established by constructing a suitable Lyapunov functional. The

conditions presented in the paper are in the form of linear matrix inequality, thus, have the advan-

tage that they can be solved numerically and very effectively using the interior-point method. These

sufficient conditions are very practical in the process of design and implementation of Hopfield neural

networks.

2 Network model

The Hopfield neural network model with multiple delays can be described by

ẋ(t) = −Cx(t) + T0S(x(t)) +
KX

k=1

TkS(x(t − τk)) (1)
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where x = (x1, · · · , xn)T ∈ ℜn denotes the state variables associated with the neurons, C = diag[c1, · · · ,

cn] with ci > 0, i = 1, · · · , n, denotes the self-feedback matrix of the neurons. T0 ∈ ℜn×n denotes that

part of the interconnecting structure which is not associated with delay, Tk ∈ ℜn×n denotes that part of

the interconnecting structure which is associated with delay τk, where τk denotes kth delay, k = 1, · · · , K

and 0 < τ1 < · · · < τK < +∞. S(x) = [s1(x1), · · · , sn(xn)]T denotes the activation functions, where

si(xi), i = 1, · · · , n satisfies Assumption 1 in the following and si(0) = 0.

The initial condition is x(s) = ϕ(s), for s ∈ [−τK , 0], where ϕ ∈ C([−τK , 0],ℜn). Here,

C([−τK , 0],ℜn) denotes the Banach space of continuous vector-valued functions mapping the inter-

val [−τK , 0] into ℜn with a topology of uniform convergence.

Assumption 1. For i = 1, · · · , n, si(xi) is bounded and satisfies the following sector condition

0 6
si(xi)

xi
6 σM

i (2)

Considering the influences of perturbations, then (1) can be described as

ẋ(t) = −(C + ∆C)x(t) + (T0 + ∆T0)S(x(t)) +

KX
k=1

(Tk + ∆Tk)S(x(t − τk)) (3)

where ∆C = diag[∆c1, · · · , ∆cn] ∈ ℜn×n and ∆Tk ∈ ℜn×n, k = 0, · · · , K are time-invariant matrices

representing the norm-bounded uncertainties.

Assumption 2. We assume that the norm of the perturbations ∆C and ∆Tk, k = 0, · · · , K are

bounded and

[∆C ∆T0 · · ·∆Tk] = HF [A B0 · · ·BK ] (4)

where F is an unknown matrix representing parametric perturbations which satisfies

FTF 6 E (5)

where E is an identical matrix, and A,B0, · · · , BK can be regarded as the known structural matrices of

perturbations with appropriate dimensions.

Definition. The equilibrium point of system (1) is said to be globally robustly stable with

respect to the uncertainties ∆C and ∆Tk, k = 0, · · · , K, if the equilibrium point of system (3) is

globally asymptotically stable.

Distinctly, the origin is an equilibrium point of (1) and (3). Thus, in order to study the global

robust stability of the zero solution of system (1) with respect to parametric uncertainties ∆C and

∆Tk, k = 0, · · · , K, it suffices to investigate the globally asymptotic stability of the zero solution of

system (3). Now, the interconnecting matrix T = T0 + ∆T0 +

KX
k=1

(Tk + ∆Tk) is nonsymmetric due to

the influences of uncertainties ∆Tk, k = 0, · · · , K.

Lemma 1. ([8] Michel, et al.) For a functional differential equation with time delay ẋ(t) =

f(t, xt), if there exists a continuous functional V (t, ϕ) such that there exist non-decreasing continuous

functions u, v, w : ℜ+ → ℜ+, which satisfy u(0) = v(0) = 0, u(‖ϕ(0)‖) 6 V (t, ϕ) 6 v(|ϕ|) and

V̇ (t, ϕ) 6 −w(‖ϕ(0)‖), then the solution x = 0 of the functional differential equation is asymptotically

stable.

In the above Lemma, ‖ · ‖ denotes the Euclidean vector norm on ℜn. xt(·) denotes the restriction

of x(·) to the interval [t − τK , t] translated to [−τK , 0]. For s ∈ [−τK , 0], we have xt(s) = x(t + s),

where t > 0. For any ϕ ∈ C([−τK , 0],ℜn), we define |ϕ| = max{‖ϕ(t)‖ : t ∈ [−τK , 0]}.

Lemma 2[9]. If U, V and W are real matrices of appropriate dimensions with M satisfying

M = MT, then

M + UV W + W TV TUT < 0 (6)

for all V TV 6 E, if and only if there exists a positive constant ε such that

M + ε−1UUT + εW TW < 0 (7)



86 ACTA AUTOMATICA SINICA Vol. 32

In the following section, we will give the sufficient conditions for the globally asymptotic stability

of equilibrium point x = 0 of system (3).

3 Robust stability

Theorem. The equilibrium point x = 0 of system (3) is globally asymptotically stable for

arbitrarily bounded delay τk if there exists a positive definite matrix P , positive constant ε and positive

diagonal matrixes Λ = diag[λk1, · · · , λkn], where λki > 0, i = 1, · · · , n, k = 0, · · · , K, such that the

following linear matrix inequality (LMI) holds2666666666664
−CTP−PC +

KX
k=0

Λk + εATA PTKEM−εATBKEM · · · · · · TP0E
M−εATB0E

M PH

EMTT
KP−εEMBT

KA −ΛK + εEMBT
KBKEM · · · · · · εEMBT

KB0E
M 0

...
...

. . . · · ·
...

...
...

... · · ·
. . .

...
...

EMTT
0 P−εEMBT

0 A εEMBT
0 BKEM · · · · · · −Λ0 + εEMBT

0 B0E
M 0

HTP 0 · · · · · · 0 −εI

3777777777775<0

(8)

where EM = diag[σM
1 , · · · , σM

n ].

Proof. By (2), we can rewrite (3) as

ẋ(t) = −(C + ∆C)x(t) + (T0 + ∆T0)E(x(t))x(t) +

KX
k=1

(Tk + ∆Tk)E(x(t − τk))x(t − τk) (9)

where

E(x) = diag[σ1(x1), · · · , σn(xn)], σi(xi) = si(xi)/xi, i = 1, · · · , n

Then σi(xi) ∈ [0, σM
i ].

Here, we introduce the following Lyapunov functional

V (xt) = x
T(t)Px(t) +

KX
k=1

Z 0

−τk

x
T
t (θ)Λkxt(θ)dθ (10)

Clearly, we have λmin(P )‖xt(0)‖2 6 V (xt) 6

 
λmax(P ) +

KX
k=1

τkλmax(Λk)

!
|xt|

2.

The derivative of V (xt) with respect to t along any trajectory of system (9) is given by

V̇ (xt) = ẋ
T(t)Px(t) + x

T(t)P ẋ(t) +
KX

k=1

x
T(t)Λkx(t) −

KX
k=1

x
T(t − τk)Λkx(t − τk) =

− x
T(t)[(C + ∆C)TP + P (C + ∆C)]x(t) +

KX
k=1

x
T(t)Λkx(t) + x

T(t)Λ0x(t)+

x
T(t)P (T0 + ∆T0)E(x(t))Λ−1

0 ET(x(t))(T0 + ∆T0)
TPx(t)−

[Λ
1/2
0 x(t) − Λ

−1/2
0 ET(x(t))(T0 + ∆T0)

TPx(t)]T[Λ
1/2
0 x(t) − Λ

−1/2
0 ET(x(t))(T0 + ∆T0)

TPx(t)]+

KX
k=1

x
T(t)P (Tk + ∆Tk)E(x(t − τk))Λ−1

k ET(x(t − τk))(Tk + ∆Tk)TPx(t)−

KX
k=1

[Λ
1/2
k x(t − τk) − Λ

−1/2
k ET(x(t − τk))(Tk + ∆Tk)TPx(t)]T×

[Λ
1/2
k x(t − τk) − Λ

−1/2
k ET(x(t − τk))(Tk + ∆Tk)TPx(t)] 6

− x
T(t)[(C + ∆C)TP + P (C + ∆C)]x(t) +

KX
k=0

x
T(t)Λkx(t)+
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x
T(t)P (T0 + ∆T0)E(x(t))Λ−1

0 ET(x(t))(T0 + ∆T0)
TPx(t)+

KX
k=1

x
T(t)P (Tk + ∆Tk)E(x(t − τk))Λ−1

k ET(x(t − τk))(Tk + ∆Tk)TPx(t) (11)

For any given t, if we let

y
T
k (t) = (yk1, · · · , ykn) = x

T(t)P (Tk + ∆Tk) (12)

then the last term of (11) assumes the form

KX
k=1

y
T
k (t)E(x(t − τk))Λ−1

k ET(x(t − τk))yk(t) =
KX

k=1

nX
i=1

y2
kiλ

−1
ki σ2

i (xi(t − τk)) 6

KX
k=1

nX
i=1

y2
kiλ

−1
ki (σM

i )2 =

KX
k=1

x
T(t)P (Tk + ∆Tk)EM

Λ
−1
k EM (Tk + ∆Tk)TPx(t) (13)

Similarly, we have

x
T(t)P (T0 + ∆T0)E(x(t))Λ−1

0 ET(x(t))(T0 + ∆T0)
TPx(t) 6

x
T(t)P (T0 + ∆T0)E

M
Λ

−1
0 EM (T0 + ∆T0)

TPx(t) (14)

From (13) and (14), we can express (11) as

V̇ (xt) 6 x
T(t)

�
− [(C + ∆C)TP + P (C + ∆C)] +

KX
k=0

Λk+

KX
k=0

P (Tk + ∆Tk)EM
Λ

−1
k EM (Tk + ∆Tk)TP

�
x(t) (15)

Here, we define

SM = −[(C + ∆C)TP + P (C + ∆C)] +
KX

k=0

Λk +
KX

k=0

P (Tk + ∆Tk)EM
Λ

−1
k EM (Tk + ∆Tk)TP (16)

By (15), V̇ (xt) 6 −λmax(−SM )‖x(t)‖2 = −λmax(−SM )‖xt(0)‖2 can be derived. From Lemma 1, we

know that the equilibrium point x = 0 of system (3) is globally asymptotically stable when SM < 0.

Then, according to Schur Complement[10], SM < 0 can be expressed by the following linear matrix

inequality26666666664−[(C + ∆C)TP + P (C + ∆C)] +
KX

k=0

Λk P (TK + ∆TK)EM · · · · · · P (T0 + ∆T0)E
M

EM (TK + ∆TK)TP −ΛK 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0

EM (T0 + ∆T0)
TP 0 · · · 0 −Λ0

37777777775 < 0

(17)

In fact, (17) is exactly26666666664−CTP − PC +

KX
k=0

Λk PTKEM · · · · · · PT0E
M

EMTT
KP −ΛK 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

EMTT
0 P 0 · · · 0 −Λ0

37777777775+
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M

EM∆TT
KP 0 · · · · · · 0

...
...

. . .
. . .

...
...

...
. . .

. . .
...

EM∆TT
0 P 0 · · · · · · 0

37777775 < 0 (18)

Because of [∆C ∆T0 · · ·∆TK ] = HF [A B0 · · ·BK ], (18) can be expressed as26666666664−CTP − PC +
KX

k=0

Λk PTKEM · · · · · · PT0E
M

EMTT
KP −ΛK 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

EMTT
0 P 0 · · · 0 −Λ0

37777777775+26666664PH

0
...
...

0

37777775F [−A BKEM · · · · · · B0E
M ]+26666664 −AT

EMBT
K

...

...

EMBT
0

37777775FT[HTP 0 · · · · · · 0] < 0 (19)

Using Lemma 2, we know that (19) holds for all FTF 6 I if and only if there exists a constant ε > 0

such that26666666664−CTP − PC +

KX
k=0

Λk PTKEM · · · · · · PT0E
M

EMTT
KP −ΛK 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

EMTT
0 P 0 · · · 0 −Λ0

37777777775+
1

ε

26666664PHHTP 0 · · · · · · 0

0 0 · · · · · · 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...

0 0 · · · · · · 0

37777775+

ε

26666664 ATA −ATBKEM · · · · · · −ATB0E
M

−EMBT
KA EMBT

KBKEM · · · · · · EMBT
KB0E

M

...
...

. . . · · ·
...

...
... · · ·

. . .
...

−EMBT
0 A EMBT

0 BKEM · · · · · · EMBT
0 B0E

M

37777775 < 0 (20)

Rearranging (20), we get26666666664−CTP−PC+
KX

k=0

Λk+
1

ε
PHHTP +εATA PTKEM −εATBKEM · · · · · · PT0E

M−εATB0E
M

EMTT
KP−εEMBT

KA −ΛK +εEMBT
KBKEM · · · · · · εEMBT

KB0E
M

...
...

. . . · · ·
...

...
... · · ·

. . .
...

EMTT
0 P−εEMBT

0 A εEMBT
0 BKEM · · · · · · −Λ0+εEMBT

0 B0E
M

37777777775< 0

(21)

By use of Schur complement, (21) is equivalent to the condition (8). The proof is completed. �

Since the norm of the perturbations ∆C and ∆Tk, k = 0, · · · , K is bounded, the corollary below

can be obtained easily by the definition and properties of matrix norm.
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Corollary 1. For arbitrarily bounded delay τk > 0, k = 1, · · · , K, the equilibrium point x = 0 of

system (3) is asymptotically stable if

2‖P0‖ · ‖∆C‖ +

KX
k=0

‖Λk‖ + (σ̄M )2 · ‖P0‖
2 ·

KX
k=0

‖Λ−1
k ‖ · (‖Tk‖ + ‖∆Tk‖)

2 < 2 (22)

where P0 = diag[1/c1, · · · , 1/cn], σ̄M = max{σM
i : 1 6 i 6 n}. Here, ‖ · ‖ denotes the matrix norm

induced by the Euclidean vector norm, i.e., ‖P0‖ =
p

λmax(PT
0 P0).

The corollary follows from SM < 0 by choosing P as P0.

Corollary 1 gives the condition under which small parameter perturbations cannot result in change

of the asymptotically stable equilibrium point x = 0. Meanwhile, this corollary is helpful to adjust

the parameters of network to minimize the influences of perturbations when we design Hopfield neural

networks.

Using Lemma 2 many times in the proof of the theory, we can have the following corollary.
Corollary 2. The equilibrium point x = 0 of system (3) is globally asymptotically stable for

arbitrarily bounded delay τk if there exists a positive definite matrix P , positive constants εk, k =
0, · · · , K + 1 and positive diagonal matrixes Λk = diag[λk1, · · · , λkn], where λki > 0, i = 1, · · · , n,
k = 0, · · · , K, such that the following linear matrix inequality (LMI) holds266666666666666666666666666666664
−C

T
P −P C+

KX
k=0

Λk+εK+1A
T

A P TKE
M

· · · · · · P T0E
M

P H · · · · · · P H

E
M

T
T
K

P −ΛK +εKE
M

B
T
K

BK E
M 0 · · · 0 0 · · · · · · 0

.

.

. 0

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
. 0

.

.

.

.
.
.

.
.
.

.

.

.

E
M

T
T
0

P 0 · · · 0 −Λ0+ε0E
M

B
T
0

B0E
M 0 · · · · · · 0

H
T

P 0 · · · · · · 0 −εK+1I 0 · · · 0

.

.

.

.

.

.

.
.
.

.
.
.

.

.

. 0

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. 0

H
T

P 0 · · · · · · 0 0 · · · 0 −ε0I

377777777777777777777777777777775< 0

(23)

The proof of the corollary and the simulations are omitted due to space limitation.

4 Conclusion

During the implementation process of Hopfield neural networks by electronic circuits, time de-

lays and parameter perturbations are inevitable. This paper studies the robust stability of a class of

Hopfield neural network models with multiple delays and parameter perturbations, and gives the suf-

ficient conditions for the asymptotic stability of equilibrium point x = 0 for arbitrarily bounded delay

τk, k = 1, · · · , K, which take the form of linear matrix inequality. Since the perturbation norms are

bounded in general, we give a useful corollary by means of the definition and properties of matrix norm.

In applications, the bound of delays is frequently not very large and is usually known. Therefore,

the next research work is to discuss further whether we can obtain the sufficient conditions for the

robust stability of equilibrium point, which depend on time delay τk, k = 1, · · · , K.
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