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Abstract The conception of “main direction” of multi-dimensional wavelet is established in this
paper, and the capabilities of several classical complex wavelets for representing directional singu-
larities are investigated based on their main directions. It is proved to be impossible to represent
directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the
above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By
optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band
frequency is overcome and the performances of the designed wavelet are improved too. Further-
more, results of image enhancement by various multi-scale methods are given, which show that the
new designed Q-shift complex wavelet do offer significant improvement over the conventionally used
wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.
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1 Introduction

In the field of signal processing, the sparse representation for unstable signal is a very important
and difficult problem. Recently, many new theories have been proposed to get sparser representations for
singular multi-dimension signals, such as ridgelet[1], curvelet[2], contourlet[3] and complex wavelet[4∼8].
In these various methods, ridgelet and curvelet are introduced from constructing directional multidi-
mensional basis, and contourlet comes from designing nonseparable multidimensional filters. But all of
their computation costs are too expensive for most applications. At the same time, J. M. Lina presented
complex Daubechies wavelet[4], whose wavelet function is complex valued. Another noted representative
of complex wavelet—the dual tree complex wavelet (i.e., DTCW), was first introduced by N. Kingsbury
for the purpose of getting shift invariant wavelet transforms[5,6]. Due to the special relationship be-
tween real and imaginary parts, multidimensional complex wavelet transform is directionally oriented
and can be realized efficiently in a separable manner. As a new type of wavelet obtaining preferable
balance between direction sensitivity and computational cost, complex wavelet has gathered the interest
of many researchers in the latest years[5∼8].

Except the mostly used tensor real admissible wavelet, there are at least three types of complex
admissible wavelets: complex Daubechies wavelet[4], Gabor wavelet[9] and DTCW[5]. In this paper,
we firstly give the definition of main direction, and then analyze these complex wavelets′ direction
sensitivities in detail. It is found that the main direction can efficiently indicate the wavelets′ capability
of representing directional signals; DTCW is the most direction sensitive and of the lowest computational
complexity in the considered complex wavelets. In the second part of this paper, we further show how
to construct a Q-shift DTCW on the principle of optimal main directions, which can overcome the
difficulty in [7] — the stopband frequency in the goal function is hard to select. In the last part of
this paper, various wavelets including the new designed DTCW are used for image enhancement. The
results of experiments show that by designing complex wavelet from main directions, we do get complex
wavelet representing directionally signals more efficiently and with better processing performances.

2 Main direction of two dimensional wavelets

Definition 1. Let ψ(x, y) be the two-dimensional admissible wavelet. The main direction of
ψ(x, y) is defined as the direction of line
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xx+ ω∗

yy = 0 (1)
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where (ω∗

x, ω
∗

y) = arg maxωx,ωy |ψ̂(ωx, ωy)|. If we denote

αψ =

�
arctan(−ω∗

x/ω
∗

y), ω∗

y 6= 0

π/2, ω∗

y = 0

then αψ is called the obliquity or the direction of ψ(x, y), where −π/2 < αψ 6 π/2.
Considering the separability is very important to efficiently realize the multidimensional transform,

we now study the property of two-dimensional tensor complex wavelets. Let ψ(t) be one-dimensional
admissible wavelet, whose corresponding scaling function exists and is denoted as ϕ(t). The two-
dimensional wavelets generated by them are

ψ1(x, y) = ϕ(x)ψ(y), ψ2(x, y) = ψ(x)ϕ(y), ψ3(x, y) = ψ(x)ψ(y) (2)

According to Definition 1 we have the following lemma:
Lemma 1. 1) Suppose ψ(t) can generate an orthogonal MRA of L2(R); then the main direction

of ψ1(x, y) is 0.
2) Suppose ψ(t) can generate a biorthogonal MRA of L2(R); then the main direction of ψ1(x, y)

is 0 or ±α, where α 6= 0.
3) If |ψ̂(ω)| = |ψ̂(−ω)|, where ψ̂(ω) is the Fourier transform of ψ(t), then the main direction of

ψ3(x, y) defined in formula (2) is ±π/4.
Remark. If the direction of a wavelet function is ±α, α 6= 0, then the singularities with directions

of α and −α are aliased in the same subband after wavelet transform. It is disadvantageous to distinguish
them from a subband. On the other hand, the biorthogonal wavelet filter banks used in image processing
are usually of linear phases, which is impossible to have preferable direction sensitivity.

Furthermore, we have the following theorem by Lemma 1.
Theorem 1. 1) All the two-dimensional wavelets generated by tight supported orthogonal or

biorthogonal symmetrical real wavelets according to formula (2) only have three directions: π/2 or ±α,
0 or ±(π/2 − α) and ±π/4.

2) Two-dimensional complex Daubechies wavelets have three directions altogether: π/2, 0 and
±π/4.

Proof. For any real valued function ψ(t) and ϕ(t), we have |ϕ̂(ω)| = |ϕ̂(−ω)| and |ψ̂(ω)| =
|ψ̂(−ω)|. By Lemma 1 1)∼3), Theorem 1) is true.

Since complex Daubechies wavelet can generate orthogonal MRA of L2(R)[4], and its scaling
function ϕ(t) and wavelet function ψ(t) are symmetric and antisymmetric, respectively[12], it means
|ψ̂(ω)| − |ψ̂(−ω)|. Then 2) holds too. �

According to Theorem 1, the wavelets of symmetric |ϕ̂(ω)| and |ψ̂(ω)| only have very weak capa-
bility for representing directional singularities (all the real wavelets are included in this class). Although
complex Daubechies wavelets are complex valued, their capability for representing directional singu-
larities of multidimensional signals is still weak. Furthermore, from Theorem 1 we deduce that the
frequency response of ideal complex wavelet should be single sided — the positive or negative part is
completely suppressed. This happens to accord with the conclusion by N. Kingsbury[7] in the study of
shift-invariant transforms. In the next section we will consider the direction of DTCW.

3 The main direction of DTCW

The decomposition structure of one-dimensional DTCW transform (i.e., DTCWT) is depicted in
Fig. 1, where {HT

0 (z),HT
1 (z)} and {GT

0 (z), GT
1 (z)}, T = A,B are two pairs of real wavelet analysis filters

which correspond to real and imaginary parts of complex wavelet filters respectively. The synthesis part
of Fig. 1 is constructed by linking every reconstruction real wavelet filter in the reverse way. If ϕT(t)
and ψT(t), T = A,B are the scaling and wavelet functions corresponding to tree T , then the complex
scaling function ϕ(t) and wavelet function ψ(t) should be written as�

ϕ(t) = ϕA(t) + iϕB(t)

ψ(t) = ψA(t) + iψB(t)
, i =

√
−1 (3)

By the separability of two-dimensional Fourier transforms for ψk(x, y), k = 1, 2, 3, we have the
following theorem.
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Fig. 1 The decomposition part of 1D DTCWT

Theorem 2. 1) Let ψk(x, y), k = 1, 2, 3 be defined by (2). If the main direction of ψ1(x, y) is α
then αψ2 = π/2 − α, where θ = θ mod π, −π/2 < θ 6 π/2.

2) Define

ψ4(x, y) = ϕ(x)ψ∗(y), ψ5(x, y) = ψ(x)ϕ∗(y), ψ6(x, y) = ψ(x)ψ∗(y) (4)

where ∗ represents complex conjugation; then αψ4 = −α, αψ5 = α− π/2; αψ3 = π/4, αψ6 = −π/4.
The conclusions in Theorem 2 mean the direc-

tions of six complex wavelet functions ψk(x, y), k =
1, 2, · · · , 6 are determined only by α-the direction of
ψ1(x, y). If the six directions have a uniform dis-
tribution in the two-dimensional plane, the complex
wavelet is considered to have strong ability for rep-
resenting directional singularities. The ideal distrib-
ution of six directions for complex wavelets is shown
in Fig. 2, where α = π/12. Fig. 2 is quite similar to
the directional partitioning for frequency region of
inseparable direction filter banks, which was firstly
introduced by R.H. Bamberger in [10]. Note the
wavelet transform corresponding to Fig. 2 is separa-
ble. Its computational cost is far lower than that in
[10].

Fig. 2 The ideal distribution of the 2D complex
wavelets′ directions

4 Design of two-dimensional DTCW based on direction

In the dual tree structure of complex wavelet transform shown in Fig. 1, Q-shift complex wavelet
is the most commonly used. The wavelet filters in the first level are both biorthogonal and of odd
length. The coefficients of {GB0 (z), GB1 (z)} in the second level are just the reverse of {GA0 (z), GA1 (z)}.
As a result, the construction of Q-shift DTCW is to construct {GA0 (z),GA1 (z)}.
4.1 Algorithms for designing DTCW

Note that GT
0 (z), T = A,B are both of even length and GB0 (z) = zGA0 (z−1) in the Q-shift

structure. The complex wavelet system is mainly determined by GA0 (z) since the wavelet filters
in the first level can be chosen as any real biorthogonal wavelet filter of odd length. Here we let
GT

1 (z) = z−1GT
0 (−z−1). From the perfect reconstruction condition of two band orthogonal filter banks

{GA0 (z), GA1 (z);GA0 (z−1), GA1 (z−1), we have

GA0 (z)GA0 (z−1) +GA0 (−z)GA0 (−z−1) = 1 (5)

Denote the coefficients of GA0 (z) as {g(k)}, k = 1 − n, · · · , n. Then (5) is equivalent to a series of
equations about {g(k)}. The number of equations in (5) together with those from K order regularity
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and normalized condition is n+K altogether. If n > K, there will be some parameters in the solution
of the equations. That is to say, {g(k)} is parameterized by the parameter set denoted by λ. Then,
different from minimizing the energy of stopband in [7], we choose the optimal parameters by measuring
its corresponding main direction. If the direction of ψ1(x, y) is the closest to α = π/12, the parameters
are just what we need.

So, the process of our design method can be described as follows:
Algorithm 1. Construct Q-shift DTCW according to direction sensitivity

1) Let the length of GA0 (z) be 2n. Its regular order is K. Then denote P (z) = GA0 (z)GA0 (z−1).

2) Derive K linear equations about {g(k)} from regularity, that is
dm

dzm
GA0 (z)

���
z=−1

= 0, m =

0, 1, · · · , K − 1.
3) Get another group of equations about {g(k)} from perfect reconstruction condition P (z) +

P (−z) = 1.

4) Put the equations from 2) and 3) and GA0 (1) = 1 together to construct an equation set. Then
find its solutions {g(k)} which is parameterized by λ. Notice that the equations are easy to solve by
Gröbner method[11] In face, the filters to design are always of short lengths (n always is not larger than
6).

5) Considering now the obtained filter banks are only perfect reconstruction and not sufficiently
wavelet filters, we should determine the permission set M of λ by Daubechies condition[12]:

max
ω

|Q(ω)Q(2ω) · · ·Q(2k−1ω)| 1k < 2K−
1

2 , where Q(ω) = GA0 (ω)
.�1 + e−iω

2

�K
In the restriction of λ ∈ M , we find the optimal parameter λ by solving min

λ∈M
(α− π/12). Then {g(k)}

or GA0 (z) are known.
6) Obtain GB0 (z) and GB1 (z) according to GA0 (z). Thus the whole complex system is constructed.

4.2 Results of construction

The most famous Q-shift complex wavelet is the 6 tap one introduced in [7]. For the convenience
to compare, we take 2n = 10, g(k) = 0 for k = −2, 3, 5, 6 as an example to construct DTCW, and let
K = 1. According to steps 1)∼4) of Algorithm 1, we get the filter coefficients as follows8>>>>><>>>>>: g(−1) =

1

4
(1 − |t|); g(2) =

1

4
(1 +

p
2 − t2); g(4) = s

g(1) =
1

8
(1 + |t| +

q
1 + t2 + 2|t| − 16(−1 +

p
2 − t2)s− 64s2)

g(−3) =
1

2
− g(−1) − g(1), g(0) =

1

2
− g(2) − g(4)

(6)

where parameter set λ = (s, t).
Fig. 3 shows the relationship of values of (s, t) and the main direction α of ψ1(x, y). The closer α

is to π/12, the darker the color in Fig. 3. The direction values corresponding to the darkest region in
Fig. 3 are listed in Table 1.

Fig. 3 The direction′s image of ψ1(x, y) for different values of s, t
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Table 1 The values for the direction of ψ1(x, y) for different values of (s, t) (unit: degrees)

s \ t −1.386 −1.357 −1.329 −1.301 −1.273 −1.244 −1.216 −1.188 −1.159 −1.131

−0.12 10.149 11.514 13.201 15.195 16.409 17.274 17.707 17.720 17.557 33.536

−0.11 11.853 13.788 16.409 17.374 17.909 18.331 18.435 18.236 35.272 38.565

−0.10 13.456 16.731 18.012 18.225 18.747 18.538 18.536 18.239 39.333 42.230

−0.09 16.409 18.012 18.540 18.853 18.747 18.846 18.736 38.853 23.764 22.999

−0.08 18.012 18.646 18.853 18.853 18.951 18.741 18.635 24.209 23.405 22.649

−0.07 18.329 18.646 18.853 18.853 18.951 18.741 24.864 23.839 23.044 22.297

−0.06 18.329 18.646 18.961 18.853 18.642 25.769 24.479 23.629 22.681 21.588

−0.05 18.329 18.646 18.646 18.540 42.990 25.367 24.267 23.253 22.098 21.010

−0.04 18.116 18.329 18.329 42.955 27.440 25.346 23.654 22.652 21.354 20.283

−0.03 17.796 18.116 42.917 39.629 27.457 24.711 23.604 22.036 20.746 19.309

The magnitude responses of scaling filters of various designed 6 tap 10/10 Q-shift DTCW are
shown in Fig. 4, in which complex wavelets designed by three methods are listed: DTCW D designed
by Algorithm 1 proposed in this paper, DTCW O designed by N. Kingsbury in [7], DTCW P by
choosing the parameters (s, t) of (6) to optimize the object function in [7]. In Fig. 4 (b), G(z) =
GA0 (z2) + z−1GA0 (z−2) is to measure the shift-invariant property of the complex wavelet corresponding
to GA0 (z). Fig. 4 indicates that the stopband energy of DTCW P is a little lower than that of DTCW O,
while that of DTCW D is the notably lowest in the three. At the same time, the shift-invariant property
of DTCW D is the best comparing with DTCW P and DTCW O. That is to say, the performances
(such as frequency responses, shift invariance and directional representation ability) of our new designed
complex wavelet are more desirable than those proposed before. To construct complex wavelet by
optimizing its direction is a reasonable and efficient way.

(a) GA
0

(z) (b) G(z)

Fig. 4 Magnitude responses of scaling filters of various designed 6 tap 10/10 Q-shift DTCW

Additionally, we can see from the images of DTCW D listed in Fig. 5 that the complex wavelets
designed in this paper are compactly supported and well directional. In fact, a class of complex wavelets
of similar performances can be obtained by choosing parameters near their optimal values. Especially,
we may get some DTCW filter of all rational coefficients near the optimal one by selecting proper
parameters. It is very useful to improve the efficiency of complex wavelet transform since only shift and
addition are needed in the transform of rational filters.

(a) Real part of ψk(x, y), k = 1, 2, · · · , 6
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(b) Imaginary part of ψk(x, y), k = 1, 2, · · · , 6

Fig. 5 Gray images of the designed 2D DTCW

From the results of constructing complex wavelet filter bank of various lengths, we find that
the principle of direction sensitivity is very efficient to get wavelet filters of good properties, such as
low stopband energy, ideal shift invariance, without increasing the length of filters or bring additional
computations. Compared to the method in [7], the new proposed one in this paper can avoid the
troublesome problem to select parameter of stop frequency. Besides, many wavelet filters are obtained
together, which makes it easy to select the most suitable one according to special applications.
4.3 Image enhancement by DTCW

Since complex wavelet can represent the directional singularities of images better than the classical
real wavelet, it is especially appropriate for applications concerning the edges of images such as image
denoising, enhancement, edge detection and image partition. In this section, we take image enhancement
as an example to illustrate the remarkable influence of wavelets′ directional sensitivity to the processed
images. In practice, most of the images to enhance include noise. Noise and the delicate edges of image
both correspond to high frequency sub-band after wavelet transform. The most difficult and important
thing in enhancement is to distinguish them from the other. Only if the delicate edges are enhanced
while noise is suppressed, the visual quality of enhanced image can be desirable.

Noticing that an important difference between noise and edge is the directionality, the edges of
images are directional, while noise is not. It is very natural to use DTCWT instead of the widely used
real wavelet transform to design the proper enhancing algorithms to get better performances.

Figs. 6 (b)∼(d) are the enhanced images of Fig. 6 (a) by three multiscale enhancing methods
— dyadic wavelet transform (DyDWT)[12], Laplacian pyramid decomposition[13] and DTCWT. The
bishrink denoising[14] is used in each enhancement process since the original image (a) is visibly noised.
What we should remark here is that the denoising processing in DTCWT operates on complex wavelet
coefficients directly[15]. Fig. 6 shows that DyDWT can suppress noise quite well, while its enhancing
effect is not satisfactory. The index of definition, DEF[16] in Laplacian pyramid decomposition is
increased remarkably after enhancing, but the noise is also amplified at the same time, so the visual
quality of enhanced image is not satisfactory either. On the other hand, image (d) enhanced by DTCWT
behaves the best both in noising suppressing and edge amplifying compared with (c) and (d). DEF
of (d) is the maximum in tree enhanced images. And its edges are the most clear. Fingerprint in
(d) is easier to identify than that in (a). This result is very helpful for many post-processing such as
fingerprint classification and identifying.

Fig. 6 The enhanced images of standard fingerprint: (a) The original image to be enhanced (DEF=17.86), (b)
The enhanced image by DyDWT (DEF=28.60), (c) The enhanced image by Laplace pyramid decomposition

(DEF=54.64), (d) The enhanced image by DyDWT (DEF=85.73)

5 Concluding remarks

To signify the abilities of wavelet transform for representing directional singularities in multi-
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dimensional signal, the term “main direction” is defined in the range of admissible wavelet, and the
directional properties of several commonly used multi-dimensional complex wavelets are studied sys-
tematically in this paper. We proved that it is impossible to get wavelet of better directional properties
than classical real wavelet in a single orthogonal or biorthogonal MRA of L2(R) without adding para-
meters or changing the tensor-production format. In all the existing complex wavelets (including the
real one as a special example), DTCWT has good performances both in direction property of wavelet
and computational efficiency in transform. Considering these facts, a new method for designing Q-
shift DTCW filters is introduced and some DTCW with better performances are designed. The image
enhanced by DTCWT using the newly designed complex wavelet is more satisfying than those by clas-
sical ones. This experiment result approves that main direction is a reasonable and important index of
multidimensional wavelet.

In summary, the directional DTCWT gives us an optimal vision for processing multi-dimensional
signals especially to the directional singularities. But there are still many problems to study in the
future. For example, what is the effect of multi-value main directions to the performances of complex
wavelet? Besides, in experiments we find that DTCWT specially suits to process signals with circle
characters, but why? We wish to publish our successive results about these problems in the following
days.
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11 Adams W W, Loustaunau P. An Introduction to Gröbner Bases. Graduate Studies in Mathematics, Provi-

dence: American Mathematical Society, 1994
12 Mallat S. A Wavelet Tour of Image Processing. London: Academic Press, 1997
13 Dippel S, Stahl M, Wiemker R, et al. Multiscale contrast enhancement for radiographies: Laplacian pyramid

versus fast wavelet transform. IEEE Transactions on Medical Imaging, 2002, 21(4): 343∼353
14 Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale de-

pendency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744∼2756
15 Wang Hong-Xia, Cheng Li-Zhi, Wu Yi. A complex wavelet based spatially adaptive algorithm for noised

image enhancement. Journal of Computer Aided Design & Computer Graphics, 2005, 17(9): 1911∼1916
16 Zhang Yu-Jin. Image Partition. Beijing: Science Precess, 2001

WANG Hong-Xia Lecturer in the Department of Mathematics & System Science at National University
of Defense Technology. Received her Ph.D. degree from National University of Defense Technology in 2004. Her
research interests include wavelet analysis, fast numerical algorithms, and image processing.

CHEN Bo Ph.D. candidate, received his master degree from National University of Defense Technology
in 2004. His research interests include wavelet analysis and image compression.

CHENG Li-Zhi Professor in the Department of Mathematics & System Science at National University of
Defense Technology. His research interests include wavelet analysis, parallel algorithms, and information theory.


