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Line-feature-based SLAM Algorithm1)
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Abstract A line-feature based SLAM algorithm is presented in this paper to resolve the conflict
between the requirements of computational complexity and information-richness within the point-
feature based SLAM algorithm, All operations required for building and maintaining the map, such
as model-setting, data association, and state-updating, are described and formulated. This approach
has been programmed and successfully tested in the simulation work, and results are shown at the
end of this paper.
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1 Introduction

Simultaneous localization and mapping (SLAM) is a hot area in robotics. There are several kinds

of SLAM algorithms, among which two are more commonly used than others. They are the grid-based

SLAM algorithm and the feature-based one. And the latter develops rapidly. So far, the point-feature

based SLAM algorithm has been well studied including the computational complexity, management of

the map and so on. It is a dilemma that more point-features should be extracted to get a rich map,

while fewer should be utilized in order to save the computational resources. While many ways are

developed to solve this problem such as SLAM with compressed filter, and SLAM with local maps[1],

there is still a lot to improve. Furthermore, the point-feature based SLAM algorithm provides a map

with scattered points which is usually hard to meet the needs of information richness. This paper

presents a line-feature based SLAM algorithm which may give a richer map with less computational

complexity compared to the point-feature based algorithm.

2 Brief introduction to the feature-based SLAM algorithm

The feature-based SLAM algorithm is an important branch of SLAM algorithms, which uses a

filter to update its state. The Kalman filter is the most popular one among all the filters, whose main

idea is predicting and updating. To predict the state of a robot at the next time, the process model

should be built. To update the state, firstly, an observation model is needed to predict the observation.

Then compare the predictions with the estimations of the actual measuring, and update the state with

the innovations from the comparison. The formulations used for updating are as follows

x̂(k + 1) = x̂(k + 1|k) + W (k + 1)[z(k + 1) − h(x̂(k + 1|k))] (1)

P (k + 1) = P (k + 1|k) − W (k + 1)S(k + 1)W T(k + 1) (2)

W (k + 1) = P (k + 1|k)∇T
hx(k + 1)S−1(k + 1) (3)

S(k + 1) = ∇hx(k + 1)P (k + 1|k)∇T
hx(k + 1) + Q

′(k + 1) (4)

To find the meanings of these parameters, see [1,2].

3 Introduction to the line-feature based SLAM algorithm

3.1 The process mode

Considering that the vehicle is controlled through a demanded velocity vc and steering angle α,

the process model that predicts the trajectory of the centre of the back axle is given by
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where ∆T is the sampling time, a, b, L are parameters shown in Fig. 1. Notice that there are two

coordinates in the system: the sensor frame, and the robot frame, respectively. To be simple, we

consider the robot as a ‘point’ and take the sensor frame as the local frame used later. After a simple

translation, the final discrete model in the global coordinates can be approximated with the following

set of equations

Xr(k + 1) =

24xr(k + 1)

yr(k + 1)

φ(k + 1)

35 =

24x′

r(k + 1) + a · cos(φ′(k)) − b · sin(φ′(k))

y′

r(k + 1) + a · sin(φ′(k)) + b · cos(φ′(k))

φ′(k + 1)

35+ γ (5)

where γ is the process noise. As the features considered are stationary, the “state transition equation” for

the features is Fi(k+1) = Fi(k). Now the state vector for time k+1 is X(k+1) = [Xr(k+1); Fi(k+1)]T.

Fig. 1 The process model

3.2 The observation model

Algorithms developed for extracting line features in the environment with sensors is shown in [3].

Here, the line hypotheses are parameterized by perpendicular distance from the origin, and the angle

between the line normal and the x-axis, (shown in Fig. 1) according to which we get the observation

model as follows:

h = (x(k + 1|k)) = [ρi(k + 1|k); θi(k + 1|k)]T + γh =24Ri −
p

x2
r(k + 1|k) + y2

r(k + 1|k) cos(βi − a tan

�
yr(k + 1|k)

xr(k + 1|k)

�
βi − φ(k + 1|k)

35+ γh (6)

where γh is the white Gauss noise with zero mean and covariance σ2.

3.3 Building the map

3.3.1 The initialization

When a robot moves in surroundings which are initially completelys unknown, the choice of a world

coordinates is arbitrary. As there is no or little prior knowledge of the environment, the coordinate

frame can be defined to have its origin at the robot′s starting position, and the initial uncertainty

relating to the robot′s position in Prr(0) is set to zero or assigned a proper value. If there is prior

knowledge of some feature locations, then it is put into the map explicitly and the feature positions

should be assigned suitable initial covariance values Pmm(0). The typical initialization would be to

have several well known feature positions with low covariance effectively pinning down the coordinate

frame, with a more uncertain robot starting location. And the whole state covariance can be presented

by P (0) = [Prr(0), Prm(0); PT
rm(0), Pmm(0)]T.

3.3.2 Data association

Suppose that there are i features extracted, fixed and put into the map M(k) till time k and at

time k+1, a set of features are detected, denoted as L(k+1). According to the main idea of the feature-

based SLAM algorithm, we usually have L(k + 1) ∩ M(k) 6= Φ, and the data association is actually a
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course of finding this intersection. To consider the effect of the parameters R and β simultaneously, we

design the comparing function as

fn,obsm(Rn, βn, Robsm, βobsm) = R
2
n + R

2
obsm − 2RnRobsm cos(βobsm − βn)

Consequently, the measurement to the Mahalanobis distance is

D
2
n,obsm = f

T
n,obsmC

−1
n,obsmfn,obsm < χ

2
α(n) (7)

where the covariance Cn,obsm = Hn,obsmP (k)HT
n,obsm + Gn,obsmS(k)Gt

n,obsm, Hn,obsm and Gn,obsm are

Jacobian matrixes of the function with respect to the variables Rn, βn and Robsm, βobsm, respectively.

P (k) and S(k) are calculated according to (2) and (4).

In the case where n = 1 and α = 0.95, the threshold is 3.841.It must be noticed that there are

three cases which satisfy the criterion: two features are nearly overlapped; or they are different sections

of one feature; or they are different features located linearly. As to the first two situations, we call them

‘true match’, and the third one is called ‘false match’ which should be added on some restrictions to

avoid.

3.3.3 Updating

Here, we still use the Kalman filter to update the states. At time k, prediction of the observations

to the fixed features in the existing map is made according to the formulations in (7). At time k + 1,

suppose that we have L(k+1)∩M(k) = L′ after the data association and we will get the estimations of

the observations to the features in the set L′. With the estimations and their corresponding predictions,

the state may be updated according to the formulations (1), (2), (3) and (4). As R and β are used

to parameterize line-features, only they are updated. But in practice, what we usually attain are line

segments due to the properties of sensors. So there is a need to make compensations to the extreme

points.

3.3.4 Augmenting the state

As what was assumed before, the set of features detected is denoted as L and the set of matched

features as L′. If the condition Lnew = L′ 6= Φ meets, then the elements in the set Lnew will be added

into the state vector as new features. And the updated state covariance can be calculated with the

measurement noise and robot position errors[4].

4 The simulation

Simulation is done mainly on the localization using Matlab. The environment simulated is shown

in Fig. 2, where features are presented by the solid line segments, and the dotted line is used to provide

steering angles. And the velocity remains 0.4m/s during the whole implementation. Results are shown

in Figs. 3 and 4. The errors about robot′s position in the eastern and northern directions are shown

in Fig. 3, from which we can see that the maximum error along the X-axis is about 2mm, while along

the Y -axis, 5mm. This is probably because few features were available for a full updating at that time.

The evolution of the state covariance is shown in Fig. 4 which is convergent.

Fig. 2 The simulated environment Fig. 3 The errors in X and Y axis Fig. 4 The state covariance

In the SLAM algorithm, the main killer of the computing sources is the state-updating[1]. Because

of the dispersivity of point features, at least 3 point-features which all belong to a line-feature are
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needed in order to articulate this line-feature. Contrarily, the presented line-feature based SLAM

avoids considering all the points belong to a line in the updating stage, and this is why it is of less

computations than the point-feature based one.

5 Conclusion

This paper describes the line-feature based SLAM algorithm in detail and shows the validity and

reliability of it according to the simulation. It is proved that the algorithm works well especially in the

environment rich of lines or where lines are easily extracted. However, the filter diverges sometimes,

because of the incorrect models or accumulated computing errors. So, much finer models should be built

and new ways should be developed to make it convergent. Mismatching may happen because during

the association we consider each matching between sensor observations and features independently and

ignore the fact that measurement prediction errors are correlated. In future work, we should take the

joint compatibility into account to find better approach to reject spurious matchings. Codes will be

optimized, and the simulation of mapping will be done as well.
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