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Abstract A novel method under the interactive multiple model (IMM) filtering framework is pre-

sented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the

process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined

by means of design experience, but Q is actually changed with the state of the maneuvering target.

Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of

time. Therefore, the experiential covariance Q can not represent the influence of state noise in the

maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions

of the system can be modeled by using Gaussian distribution, although the dynamic system is of a

nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with

the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally,

the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the

existing algorithms and the tracking precision for the maneuvering targets is improved efficiently.

Key words Interactive multiple model (IMM) filter, EM algorithm, noise covariance identification,

online parameter estimation

1 Introduction

The adaptive estimation methods for maneuvering target have been proposed[1,2], such as vari-

able state dimension (VSD) filter, input estimation (IE) filter, multiple-layer process noise filter and

multiple model (MM) mixed estimator. Currently, the mainstream method of the mixed estimation is

the interactive multiple model (IMM) algorithm[1,3], a great deal of research for IMM focuses on the

following aspects. 1) Optimal design of model set and development of so-called variable structure model

set (VSM). The estimation performance of the IMM algorithm depends on the model set seriously, and

there is a trend to use more models in order to improve the estimation precision. Unfortunately, the

research result shows that more models do not mean higher estimation performance, and too more

models merely increase the computational load and decreased the precision[4]. Hence, many work on

the variable structure IMM (VS-IMM)[5∼7] should be completed. 2) Theoretic analysis on the IMM

estimator. Although the IMM filtering has been employed in many cases successfully, the theoretic

analysis on its performance and characteristic remains absent yet[8]. 3) Some artificial intelligence

methods such as artificial neural network, fuzzy logic algorithm, etc. are combined with the IMM. 4)

New methods to deal with the nonlinear problems such as the particle filtering are merged into the

IMM. 5) The online estimation of the IMM parameters. For example, the model probability transition

matrix is frequently used to update the model probability under the Bayesian framework, the online es-

timation of the model probability transition matrix outperforms that of prior determined[4,9,10]. Under

the current IMM framework, the general processing of state noise and measurement noise is assumed

to be zero-mean Gaussian with the independent covariance, which can be determined by means of ex-

perience design. But in practice, the measurement noise covariance can be pre-determined generally,

and can keep constant with time. On the contrary, the state noise covariance is variable with the

maneuvering target, meanwhile, it is heavily influenced by other factors such as circumstances of the

target, therefore, the state noise covariance should be determined online.

In this paper, by using the expectation maximum (EM) algorithm[11∼14] , and under the assump-

tion that the state transition obeys the Gaussian distribution and the Markovian chain theory, the
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estimation equation about the state noise covariance and the measurement noise covariance are ob-

tained. The estimation errors are analyzed, and furthermore, Monte-Carlo simulations are performed.

The simulation results show that the IMM estimation precision (root mean square error-RMSE) with

the adaptive measurement noise covariance is better than that with pre-determined one.

2 Nonlinear system model

In order to use the EM algorithm on parameters learning, the discrete-time multiple-model dy-

namic system can be formulated as

xk = Frxk−1 + Drwk−1 (1)

zk = h(x) + vk, r = 1, · · · , M, k = 1, · · · , L (2)

where M denotes the number of the models in the model set, L the total time step number of the

simulation, xk ∈ R
n the state vector at time step k, and wk the process noise vector. The state

transition matrix Fr and noise input matrix Dr are assumed to be constant matrixes[1], zk, vk ∈ R
m

the measurement vector and measurement noise in time step k, respectively, and zk can be observed

in every time step k. h : R
n → R

m is a nonlinear measurement mapping[2], wk and vk are the process

and measurement noises, respectively, which are assumed to be independent of each other and obey

zero-mean Gaussian distribution, i.e., wk ∼ N (0, Q0) and vk ∼ N (0, R). Hence, the covariance of

Drwk is

Q = E[Drwk(Drwk)′] = DrQ0D
′
r (3)

where (·)′ stands for the transposition of matrix. In the general situation, R can be determined a priori,

but it is impossible for Q0. Obviously, the online estimation of state noise covariance is reasonably

necessary.

3 EM algorithm for the dynamic system model with nonlinear measurement equation

To derive the EM algorithm for nonlinear state space models, the likelihood of the complete data

should be obtained firstly. It is assumed that the initial conditions, the evolution of the states and the

likelihood of the measurements data can be represented by the Gaussian distribution. The unknown

parameter set is denoted as ϕ = {µ,Π , Q, R}, where µ and Π are the mean and covariance of the

initial states, respectively, Q and R are the covariance matrices of the state and measurement noises

respectively, i.e.,

p(x0|ϕ) =
1

(2π)n/2|Π |1/2
exp[−

1

2
(x0 − µ)′Π−1(x0 − µ)] (4)

p(xk|xk−1, ϕ) =
1

(2π)n/2|Q|1/2
exp[−

1

2
(xk − Frxk−1)

′Q−1(xk − Frxk−1)] (5)

p(zk|xk, ϕ) =
1

(2π)m/2|R|1/2
exp[−

1

2
(zk − h(xk))′R−1(zk − h(x))] (6)

Under the assumptions of uncorrelated noise and state evolution according to the Markovian chain, the

likelihood of the complete data can be represented by

p(xk, zk|ϕ) = p(x0|ϕ)

kY
s=1

p(xs|xs−1, ϕ)

kY
s=1

p(zs|xs, ϕ)

where xk , {x1, · · · , xk}, zk , {z1, · · · , zk}. Actually, the so-called “slide-window” with limited length

N is used here to rewrite the above equation. At time step k, it is assumed that the measurement zk

has been obtained, and the starting p(xk−N |ϕ) is the same as that in (4) by replacing x0 with xk−N .

Define xk−N:k , {xk−N , · · · , xk}, zk−N+1:k , {zk−N+1, · · · , zk}. So the likelihood of the complete

data is obtained as

p(xk−N:k, zk−N+1:k|ϕ, zk) = p(xk−N |ϕ)

kY
s=k−N+1

p(xs|xs−1, ϕ)

kY
s=k−N+1

p(zs|xs, ϕ) (7)
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Hence, by making logarithm operation on both sides of (7), and then substituting the (4)∼(6) into it,

the log-likelihood of the complete data can be derived as

ln p(xk−N:k, zk−N+1:k|ϕ, zk) = −
kX

s=k−N+1

[
1

2
(zs − h(xs))

′
R

−1(zs − h(xs))]−

N

2
ln |R| −

kX
s=k−N+1

[
1

2
(xs − Frxs−1)

′Q−1(xs − Frxs−1)] −
N

2
ln |Q|−

[
1

2
(xk−N − µ)′Π−1(xk−N − µ)] −

1

2
ln |Π | −

(N + 1)n + Nm

2
ln(2π) (8)

3.1 The expectation of the log-likelihood

Taking the expectations on both sides of the log-likelihood for the complete data leads to

E[ln p(xk−N:k, zk−N+1:k|ϕ, zk)] = −
N

2
ln |R| −

N

2
ln |Q| −

1

2
ln |Π | −

(N + 1)n + Nm

2
ln(2π)−

kX
s=k−N+1

1

2
E[(z′

sR
−1

zs − z
′
sR

−1
h(xs) − h(xs)

′R−1
zs + h(xs)

′R−1
h(xs))|ϕ, zk]−

kX
s=k−N+1

1

2
E[(x′

sQ
−1

xs − x
′
sQ

−1Frxs−1 − x
′
s−1F

′
rQ

−1
xs + x

′
s−1F

′
rQ

−1Frxs−1)|ϕ, zk]−

1

2
E[(x′

k−NΠ
−1

xk−N − x
′
k−NΠ

−1
µ − µ

′
Π

−1
xk−N + µ

′
Π

−1
µ)ϕ, zk] (9)

In order to compute the expectation of the measurement mapping h(xk), it is assumed that

E[xk|ϕ, zk−1] = x̂k|N (10)

The Taylor series extension of the nonlinear measurement mapping h(xk) at the state point x̂k|N can

be obtained as

h(xk) ≈ h(x̂k|N) + Gk|N x̃k|N +
1

2

mX
i=1

eix̃
′
k|NSk|N,ix̃k|N (11)

where ei ∈ R
m denotes the ith unit normal vector, x̃k|N , xk − x̂k|N is the prediction error (also

called residual in some papers), and Gk|N ,
∂h(xk)

∂xk

���
xk=x̂k|N

= {∂hi/∂xj}m×n is the gradient, and

Sk|N,i ,
∂

∂xk
[
∂hi(xk)

∂xk
]′
���
xk=x̂k|N

is the Jacobian matrix of the ith element hi(xk) of h(xk). Taking

expectation on both sides of the above equation yields

E[h(xk)|ϕ, zk−1] , h(xk) − E[h(xk)|ϕ, zk−1] ≈

Gk|N x̃k|N −
1

2

mX
i=1

eitr{Sk|N,iPk|N} +
1

2

mX
i=1

eix̃k|NSk|N,ix̃k|N (12)

where tr(·) denotes the matrix trace operator, Pk|N , E[x̃k|N x̃′
k|N |ϕ, zk−1] the covariance matrix of

state prediction error. Define

h̃(xk) , h(xk) − E[h(xk)|ϕ, zk−1] ≈ Gk|N x̃k|N +
1

2

mX
i=1

eix̃
′
k|NSk|N,ix̃k|N−

1

2

mX
i=1

eitr{Sk|N,iPk|N}

and E[h̃(xk)|ϕ, zk−1] = 0 is obvious. It is assumed that the conditional probability density function of

xk is almost symmetry about x̂k|N , and hence the central-moments of more than the third order case

can be approximated by zero. Consequently, it can be written as

cov[h̃(xk), h̃(xk)|ϕ, zk−1] = E[h̃(xk)h̃
′
(xk)|ϕ, zk−1] ≈ Gk|NPk|NG′

k|N−
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1

4

mX
i=1

mX
j=1

eie
′
jE[x̃′

k|NSk|N,ix̃k|N |ϕ, zk−1]tr{Sk|N,jPk|N}−

1

4

mX
i=1

mX
j=1

eie
′
jtr{Sk|N,iPk|N}E[x̃′

k|NS′
k|N,j x̃k|N |ϕ, zk−1]+

1

4

mX
i=1

mX
j=1

eie
′
jtr{Sk|N,iPk|N}tr{Sk|N,jPk|N} =

Gk|NPk|NG′
k|N −

1

4

mX
i=1

mX
j=1

eie
′
jtr{Sk|N,iPk|N}tr{Sk|N,jPk|N} (13)

and therefore,

E[h(xk)h′(xk)|ϕ, zk−1] = Gk|NPk|NG′
k|N + h(x̂k|N )h′(x̂k|N )+

h
′(x̂k|N )

mX
i=1

eitr{Sk|N,iPk|N} −
1

4

mX
i=1

mX
j=1

eie
′
jtr{Sk|N,iPk|N}tr{Sk|N,jPk|N} (14)

Similarly,

E[xkx
′
k|ϕ, zk−1] = Pk|N + x̂k|N x̂

′
k|N (15)

E[xk−1x
′
k−1|ϕ, zk−1] = Pk−1|N + x̂k−1|N x̂

′
k−1|N (16)

E[xkx
′
k−1|ϕ, zk−1] = Pk,k−1|N + x̂k|N x̂

′
k−1|N (17)

Then by substituting (14)∼(17) into (9), using the fact that the trace and expectation are linear

operators, and Fr not being the symmetrical matrix in general situation, the expected log-likelihood

can be rewritten as

E[p(xk−N:k, zk−N+1:k|ϕ, zk)] = −
N

2
ln|R| −

N

2
ln|Q| −

1

2
ln|Π | −

(N + 1)n + Nm

2
ln(2π)−

kX
s=k−N+1

1

2
tr[R−1

0B� zsz
′
s − h(x̂s|N )z′

s − zsh
′(x̂s|N ) + Gs|NPs|NG′

s|N + h(x̂s|N)h′(x̂s|N)+

h′(x̂s|N )
mX

i=1

eitr{Ss|N,iPs|N} −
1

4

mX
i=1

mX
j=1

eie
′
jtr{Ss|N,iPs|N}tr{Ss|N,jPs|N}

1CA]−

kX
s=k−N+1

1

2
tr{Q−1[(x̂s|N x̂

′
s|N + Ps|N )′ − 2Fr(x̂s|N x̂

′
s−1|N + Ps,s−1|N )′ + Fr(x̂s−1|N x̂

′
s−1|N+

Ps−1|N )F ′]} −
1

2
tr{Π−1(x̂k−N|N x̂

′
k−N|N + Pk−N|N − x̂k−N|Nu

′ − µx̂
′
k−N|N + µµ

′)} (18)

Using the following abbreviations8>>>>>>>>>><>>>>>>>>>>:
Θ , h′(x̂s|N )

mX
i=1

eitr{Ss|N,iPs|N} −
1

4

mX
i=1

mX
j=1

eie
′
jtr{Ss|N,iPs|N}tr{Ss|N,jPs|N}

Ψ ,
Pk

s=k−N+1(x̂s|N x̂′
s|N + Ps|N), Ω ,

kX
s=k−N+1

(x̂s|N x̂
′
s−1|N + Ps,s−1|N )

Φ ,
kX

s=k−N+1

(x̂s−1|N x̂
′
s−1|N + Ps−1|N )

(19)

obviously Ψ ,Ω and Φ are the symmetrical matrixes, then the final expression can be obtained as

ELk , E[ln p(xk−N:k, zk−N+1:k|ϕ, zk)] = −
N

2
ln |R| −

N

2
ln|Q| −

1

2
ln |Π | −

(N + 1)n + Nm

2
ln(2π)−

kX
s=k−N+1

1

2
tr{R−1[(zs − h(x̂s|N ))(zs − h(x̂s|N ))′ + Gs|NPs|NG′

s|N + Θ ]}− (20)
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1

2
tr{Q−1(Ψ − 2FrΩ

′ + FrΦ
′F ′

r)} −
1

2
tr{Π−1[(x̂k−N|N − µ)(x̂k−N|N − µ)′ + Pk−N|N ]}

3.2 Maximizing the expected log-likelihood by differentiation

In order to maximize the expected log-likelihood expression with respect to the unknown parameter

set ϕ, the derivative computation of matrix differentiation with respect to each parameter individually

should be performed.

Differentiating the expected log-likelihood with respect to the initial state µ yields

∂

∂µ
E[ln p(xk−N:k, zk−N+1:k|ϕ, zk)] =

∂

∂u
[−

1

2
tr{Π−1(x̂k−N|N x̂

′
k−N|N + Pk−N|N

− x̂k−N|Nµ
′ − µx̂

′
k−N|N + µµ

′)}] = −
1

2
Π

−1(−2x̂k−N|N + 2µ) (21)

Let this result be zero to yield the value of µ that maximizes the log-likelihood approximatively. So

the estimation value of the initial state should be

µ = x̂k−N|N (22)

Differentiating the expected log-likelihood with respect to the inverse of the initial covariance Π−1 gives

∂

∂Π−1
E[ln p(xk−N:k, zk−N+1:k|ϕ, zk)] =

∂

∂Π−1
[−

1

2
tr|Π | −

1

2
tr{Π−1((x̂k−N|N − µ)(x̂k−N|N−

µ)′ + Pk−N|N )}] =
1

2
Π −

1

2
[(x̂k−N|N − µ)(x̂k−N|N − µ)′ + Pk−N|N ] (23)

Similarly, by equating the above expression to zero, the initial covariance should be obtained as

Π = Pk−N|N (24)

Differentiating the expected log-likelihood with respect to R−1 gives that

∂

∂R−1
E[ln p(xk−N:k, zk−N+1:k|ϕ, zk)] =

∂

∂R−1
[
N

2
ln |R−1|−

kX
s=k−N+1

1

2
tr{R−1((zs − h(x̂s|N ))(zs − h(x̂s|N ))′ + Gs|NPs|NG′

s|N + Θ)}] =

N

2
R −

kX
s=k−N+1

1

2
[(zs − h(x̂s|N ))(zs − h(x̂s|N ))′ + Gs|NPs|NG′

s|N + Θ ] (25)

Equating the above expression to zero yields the value of R that maximizes the log-likelihood, hence,

the measurement noise covariance should be updated by

R =
1

N

kX
s=k−N+1

[(zs − h(x̂s|N))(zs − h(x̂s|N))′ + Gs|NPs|NG′
s|N + Θ ] (26)

Similarly, differentiating the expected log-likelihood with respect to the inverse of the Q yields

∂

∂Q−1
E[ln p(xk−N:k, zk−N+1:k|ϕ, zk)] =

∂

∂Q−1
[
N

2
ln |Q−1| −

1

2
tr{Q−1(Ψ − 2FrΩ

′ + FrΦ
′F ′

r)}] =

N

2
Q −

1

2
(Ψ − 2FrΩ

′ + FrΦ
′F ′

r) (27)

Equating the above expression to zero, and based on the fact that the Ω and Φ in (19) are symmetrical

matrixes, the evolved state noise covariance should be updated by Q = (Ψ − 2FrΩ + FrΦF ′
r)/N .

Furthermore, considering (3), it follows that

Q0 =
1

N
D+

r (Ψ − 2FrΩ + FrΦF ′
r)(D

′
r)

+ (28)



No. 1 LEI Ming et al.: Expectation-maximization (EM) Algorithm Based on IMM · · · 33

where (·)+ denotes the pseudo-inverse of matrix. The noise input-matrix Dr is not square-matrix

generally.

3.3 The IMM filtering with adaptive noise covariance

Firstly, at the discrete time k = 0, the parameters should be initialized: given the guess value

ϕ, including state covariance {Q(r)
0 }M

r=1 with respect to the model set {Fr}
M
r=1, M denotes the model

number. Measurement noise covariance R0, the mean and covariance of the initial state µ and Π , the

relative error upper boundary ε and the iterative number C.

Secondly, the E and M steps for the one cycle of the IMM (the kth step filtering recycle, N 6
k 6 L, L denotes numbers of the simulation time step) can be prescribed as follows[1,3] :

1) Model-conditional re-initialization (models interacting stage) (for model i, i = 1, 2, · · · , M)

Calculating predicted model probability µ
(i)

k|N
, mixing model probability (mixing weight) µ

(j|i)
k−1 ,

mixing state estimation x̂
(i)
k−1|N and mixing state covariance P

(i)
k−1|N .

2) The EM based iterative process for noise covariance (for iteration j, j = 1, 2, · · · , C)

E-step: determine the expected values x̂
(i)

j,k|N
, P

(i)

j,k|N
, P

(i)

j,k−1|N
, and P

(i)

j,k,k−1|N
, given the last

iteration′s estimation R
(i)
j−1,k and Q

(i)
j−1,k, using the extend Kalman filtering algorithm.

M-step: determine the current iteration R
(i)
j,k and Q

(i)
j,k, using equations described in (26), (28).

Expected-log-likelihood computation step: calculating expected log-likelihood ELj,k, and judging

|ELj,k − ELj−1,k|/|ELj,k| 6 ε

if true, the iteration of j should be terminated. Finally, using the R
(i)
j,k and Q

(i)
j,k as the approximations

of the true R
(i)
k and Q

(i)
k , respectively.

3) Model-conditional filtering (for model i, for i = 1, 2, · · · , M)

Calculating predicted state x̂
(i)

k|N
and predicted error covariance P

(i)

k|N
, measurement predicted

error covariance T
(i)
k , filtering gain K

(i)
k , updated state x̂

(i)
k|k and updated state covariance P

(i)
k|k.

4) Model probability update (for model i, i = 1, 2, · · · , M)

Calculating the model likelihood L
(i)
k , p[z̃

(i)

k|N
|m(i)

k , zk−1], m
(i)
k denotes the ith model at time

step k, model probability µ
(i)
k .

5) Estimation fusion

Calculating the overall state estimation x̂k|k and overall state residual covariance Pk|k.

4 Error analysis

From section 3, we easily know that the main error stems from (11). Hence, we can quantify the

influence of the truncated error as follows.

The Taylor series expansion of the nonlinear measurement function h(xk) at x̂k|N is expressed by

h(xk) = h(x̂k|N ) + Gk|N x̃k|N +
1

2

mX
i=1

eix̃
′
k|NSk|N,ix̃k|N +

∞X
i=3

Ck|N,i (29)

where Ck|N,i denotes the ith-order term about the state prediction error x̃k|N . The meaning of the

Gk|N , Sk|N,i and ei is the same as that in (11). Furthermore,

h̃(xk) , h(xk) − E[h(xk)|ϕ, zk−1] = Gk|N x̃k|N +
1

2

mX
i=1

eix̃
′
k|NSk|N,ix̃k|N

−
1

2

mX
i=1

eitr{Sk|N,iPk|N} +
∞X

i=3

Ck|N,i −
∞X

i=3

E[Ck|N,i|ϕ, zk−1]

again let E[h̃(xk)|ϕ, zk−1] = 0. From the supposition in Section 3.1 that the conditional probability

density function of xk is almost symmetry about its conditional expectation, hence, the odd exponential

terms of the third-order as well as those above the third-order central-moment can be approximated by
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zero; and the even exponential terms those of above the fourth-order central-moment are so small that

can be ignored. So from (29), (13) we can get

cov[h̃(xk), h̃(xk)|ϕ, zk−1] ≈ Gk|NPk|NG′
k|N−

1

4

mX
i=1

mX
j=1

eie
′
jtr{Sk|k−i,iPk|N}tr{Sk|N,jPk|N} + Ξk (30)

where

Ξk ,
1

4

mX
i=1

mX
j=1

eiE [x̃′
k|NSk|N ,i x̃k|N x̃

′
k|NS

′
k|N ,j x̃k|N |ϕ, zk−1 ]e′

j−

∞X
j=1

E[Ck|N,2j+2|ϕ, zk−1]

mX
i=1

eitr{Sk|N,iPk|N}

From (29), (30) and (14), we have

E[h(xk)h′(xk)|ϕ, zk−1] = cov[h̃(xk), h̃(xk)|ϕ, zk−1] + 2E[h(xk)h′(x̂k|N )|ϕ, zk−1]−

E[h(x̂k|N )h′(x̂k|N )|ϕ, zk−1] ≈ Gk|NPk|NG′
k|N + h(x̂k|N )h′(x̂k|N)+ (31)

h
′(x̂k|N)

mX
i=1

eitr{Sk|N,iPk|N} −
1

4

mX
i=1

mX
j=1

eie
′
jtr{Sk|N,iPk|N}tr{Sk|N,jPk|N} + Ξk

Consequently, from (9), (29), (31), we can get the error of the expected log-likelihood ∆EL (see (20))

as

∆EL =
kX

s=k−N+1

1

2
tr{R−1((zs − h(x̂s|N))(zs − h(x̂s|N ))′ + Gs|NPs|NG′

s|N + Θ + Ξs)}−

kX
s=k−N+1

1

2
tr{R−1((zs − h(x̂s|N ))(zs − h(x̂s|N ))′ + Gs|NPs|NG′

s|N + Θ)} (32)

Finally, from (32), (21), (23), (25), and (27) the estimated errors of u,Π , Q and R at time step k are

∂∆EL

∂u
=

∂∆EL

∂Π−1
=

∂∆EL

∂Q−1
= 0,

∂∆EL

∂R−1
≈

1

2

kX
s=k−N+1

Ξs

That is,

∆k,µ = ∆k,Π = ∆k,Q = 0, ∆k,R =
2

N

∂∆EL

∂R−1
=

1

N

kX
s=k−N+1

Ξs (33)

So we can see from (33) that the sum of the truncated error

∞X
i=3

Ck|k−1,i has no influence on the initial

state µ, the initial state covariance Π , and the state noise covariance Q, but affects the measurement

noise covariance R quantitated by ∆k,R. Obviously, the ∆k,R has relations with the x̂k|N , Gk|N and

Sk|N,i merely, so the effective method to decrease the ∆k,R is to improve the state estimation x̂k|N

indeed.

5 Simulation

5.1 Design of the model set

Under the IMM framework, the evolved state equation can be formulated as xk = Frxk−1 +

Drwk−1, the model set {Fr}
M
r=1 includes three classical models only, that is, constant acceleration

(CA) model, the constant turn coordinate (CT) model, and constant velocity (CV) model [1,3,15∼17].

For two dimensioned plane motion, the state vector is defined as

xk = [x(k) ẋ(k) ẍ(k) y(k) ẏ(k) ÿ(k)]′ (34)
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The evolved state matrix Fr in {Fr}
3
r=1 can be employed as follows

FCT =

�
F 1

CT F 2
CT

−F 2
CT F 1

CT

�
, F 1

CT =

24 1 sin(ω(k)T )/ω(k) 0

0 cos(ω(k)T ) 0

0 0 0

35 , F 2
CT =

24 0 [cos(ω(k)T )− 1]/ω(k) 0

0 − sin(ω(k)T ) 0

0 0 0

35
FCA =

�
F1 0

0 F1

�
, F1 =

24 1 T T 2/2

0 1 T

0 0 1

35 , FCV =

�
F2 0

0 F2

�
, F2 =

24 1 T 0

0 1 0

0 0 0

35
The uniform expression of the state noise input-matrix for the above evolving matrix is

DCT = DCA = DCV =

�
D 0

0 D

�
, D = [T 2/2 T 1]′

5.2 Measurement equation

The measurement equation with the range and the azimuth angle can be formulized as follows[1,18] :

zk = h(xk) + vk = [h1(xk) h2(xk)]′ + vk (35)

where the range measurement is h1(xk) = (x(k)2 + y(k)2)1/2, the azimuth angle measurement is

h2(xk) = tan−1(y(k)/x(k)).

5.3 Selection of the trajectory parameters and simulation results

Suppose that the trajectory consists of seven segments: 150 seconds CA motion with noise covari-

ance Q1 = diag(0.2, 0.2); 170 seconds clock-wise CT motion with noise covariance Q2 = diag(1.0, 1.0)

and turning rate ω1 = 0.015rad/s; 180 seconds CV motion with covariance Q3 = diag(0.5, 0.5); 180 sec-

onds clock-wise CT motion with noise covariance Q4 = Q2 and turning rate ω1; 200 seconds CA

motion with noise covariance Q5 = Q1; 200 seconds clock-wise CT motion with noise covariance

Q6 = Q2 and ω1; 180 seconds CV motion with noise Q7 = Q3. The initial covariance and state are

P0 = diag(100m2,10(m/s)2,1(m/s2)2,100m2,10(m/s2)2,1) and x0 =[0m, 100m/s, 20m/s2, 0m, 100m/s,

20m/s2]′ respectively. The measurement noise covariance R = diag(10, 1). The state noise covariance

used in the common IMM filtering can be designed as Q = diag(0.5, 0.5), contrarily, in the adaptive

IMM filtering (IMM+EM) it can be estimated by the EM iteration. The root mean square (RMS) error

is used as the evaluating criterion of the simulation results.

200 runs of the Monte-Carlo simulation are performed and the results are showed in Fig. 1∼Fig. 3.

From the figures we can see that the state covariance error has slight influence on the RMS error of

the position estimation, but heavy influence on the RMS error of the velocity and the acceleration

estimation. Comparing with the common IMM filtering, the adaptive state covariance IMM improves

the performance to some extent indeed. The main reason is that the online estimated state covariance

is employed in the filtering stage, this can greatly reduce the additional filtering error brought by the

mismatch of the variable state covariance.

Fig. 1 The comparing of estimated position RMS error in x and y directions

with respect to the left and right Figs



36 ACTA AUTOMATICA SINICA Vol. 32

Fig. 2 The comparing of the estimated velocity and acceleration RMS error in x direction

with respect to the left and right Figs

Fig. 3 The comparing of the estimated velocity and acceleration RMS error in y direction

with respect to the left and right Figs

6 Conclusion

For the maneuvering target tracking system, generally, measurement noise variance R can be pre-

determined by means of experiments at a radar receiver, but the quantity of state noise variance Q

can be variable with the maneuvering state and can not be prior determined. Under the framework of

IMM, the quantity of Q is variable with model coefficient Fr, that is, different Fr with different Q
(r)
0 .

Hence, online estimating state noise variance (level) can be one of the primary problems waiting to be

solved eagerly. In this paper, based on the dynamic system with nonlinear measurement equation and

EM algorithm, the online estimation equation of Q is derived, the schedule of the IMM with adaptive

Q is prescribed, and the analysis of the estimation error is performed quantitively. The new algorithm

theoretically improves the performance of the IMM by online adaptive Q. Meanwhile, Monte-Carlo

simulations also show that the filtering precision can be improved to some extent.
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