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Abstract This paper addresses the single-machine scheduling problem with release times mini-
mizing the total completion time. Under the circumstance of incomplete global information at each
decision time, a two-level rolling scheduling strategy (TRSS) is presented to create the global schedule
step by step. The estimated global schedules are established based on a dummy schedule of unknown
jobs. The first level is the preliminary scheduling based on the predictive window and the second
level is the local scheduling for sub-problems based on the rolling window. Performance analysis
demonstrates that TRSS can improve the global schedules. Computational results show that the
solution quality of TRSS outperforms that of the existing rolling procedure in most cases.
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1 Introduction

Scheduling problems are sorted as deterministic and dynamic problems according to whether the

global information about jobs and machines is known a priori or not. The optimal solution of dy-

namic or large-size scheduling problem is impossibly obtained because of incomplete global information

and computational complexity. When the predictive control principle[1] was extended to scheduling

problems, the rolling horizon scheduling procedures[2∼6], which can just deal with computational com-

plexity and uncertain information, were developed. In [2], a generic rolling scheduling mechanism based

on initial schedule was established and the global performances were analyzed, however, the discussed

scheduling circumstance was deterministic. In fact, for dynamic scheduling problems with release times,

jobs arriving in further future are usually unknown at decision moments due to the incomplete global

information. Rolling horizon procedures (RHPs) addressed such dynamic circumstance based on local

optimal sub-problems in [3] and the computational results show effective. However, the solutions are

sometimes bad due to no global performance analysis.

It is difficult to analyze the global performances for dynamic scheduling in finite horizon. In

this paper, we will extend the rolling mechanism of [2] to address dynamic scheduling problems with

incomplete global information, present a kind of two-level rolling scheduling strategy, and analyze the

global performances.

2 TRSS for dynamic 1/ri/ΣC i

The scheduling problem model 1/ri/ΣCi indicates that n jobs are to be scheduled for a single

machine to minimize the total completion time and each job has a release time ri and a processing time

pi. This problem is strongly NP-hard[7]. We assume that n is a finite integer.

2.1 Dummy initial schedule

The involved definitions and detail descriptions of rolling scheduling based on initial schedule

were presented in [2]. There are two stages, i.e., firstly an initial schedule is established for all jobs and

secondly a rolling scheduling procedure is performed based on the initial schedule. At each decision mo-

ment, the global schedule is transformed by the local scheduling. A schedule before the local scheduling

is called a previous schedule and the one after the local scheduling is called the current schedule. Here

the initial schedule provides not only a sequence of jobs entering rolling windows but also a base of

formulating global schedules. It helps to analyze global performances.
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A global schedule will be unlikely specified in a dynamic scheduling problem until global informa-

tion is completely known. At the beginning, when all jobs are unknown, we can create a dummy initial

schedule, denoted as D̃. D̃ is made by the dispatching rule FIFO (First in first operating), where jobs

are sequenced from small to large in job release times as well as job processing times (whenever the

release times are the same). In a dummy schedule, a job is just a symbol and not specified until the job

is predicted. Though any dispatching rules can be used to create a dummy schedule, only FIFO can

make the job sequence consistent with the sequence of jobs to be predicted. This is important to the

following analysis. We can provide an estimated schedule for unknown jobs based on dummy schedule

so that global performances can be estimated with incomplete information.

2.2 Preliminary scheduling for predictive window

Jobs are predicted step by step with the decision moment going forward. At each moment, a

predictive window, which consists of all unfixed jobs that have been predicted, is identified. At t, if we

let the size of predictive horizon be T and the physical decision moment be ut, the predictive horizon

is specified to be [ut, ut + T ]. The predictive window can be identified by predictive horizon based on

the previous schedule at each moment.

At t = 1, the global previous schedule is just the dummy initial schedule D̃, where the jobs arriving

during the predictive horizon [0, T ] are predicted. All known jobs constitute the predictive window F (1)

which forms the previous schedule, denoted as DY (F (1)). Though DY (F (1)) comes from the beginning

of D̃, it is not a partial dummy schedule any more and becomes a partial known schedule. The unknown

job set following F (1), denoted as F̃ (1), forms the corresponding previous schedule DY (F̃ (1)) which

is still a partial dummy schedule. We identify previous schedules by subscript Y . Generally, at t,

the global previous schedule DY (t) comes from the global current schedule of t − 1, which consists

of two partial schedules. The front is the fixed partial schedule D(S(t − 1)) and the following is a

partial schedule to be rescheduled. The predictive window F (t) consists of all known jobs from the

latter with ri 6 ut + T , for which the corresponding partial schedule is denoted as DY (F (t)). The

unknown jobs following F (t) constitute the job set F̃ (t) and the corresponding schedule DY (F̃ (t))

is still a dummy schedule. At t, the global schedule is estimated to be the global previous schedule

DY (t) = D(S(t − 1)) + DY (F (t)) + DY (F̃ (t)).

The preliminary scheduling is performed aiming at the previous schedule DY(F (t)), where DY(F (t))

= DR(KL̄(t−1))+DY (K̄(t−1)). DR(KL̄(t−1)) is the remaining partial schedule unfixed in the local

solution at t − 1 and DY (K̄(t − 1)) represents the partial schedule of F (t) outside the rolling window

K(t − 1), shown as Fig. 1 (The interval lengths represent the processing times of the partial schedules

and the dashed lines represent the dummy partial schedules.)

The previous schedule DY (F (t)) is transformed into the preliminary schedule DP (F (t)) by the

following preliminary scheduling algorithm:

1) At t = 1, compute the completion time CY
F (1) and the performance JP

F (1) of DY (F (1)); generate

the preliminary schedule DP (F (1)) through rescheduling F (1) by use of SPT[8], compute the completion

time CP
F (1) and the performance JP

F (t) of DP (F (1));

2) When t > 1, compute the completion time CY
F (t) and the performance JP

F (t) of DY (F (t));

transform DY (K̄(t − 1)) into DP (K̄(t − 1)) by use of SPT; then the preliminary schedule for F (t) is

DP (F (t)) = DR(KL̄(t− 1)) + DP (K̄(t− 1)); compute the completion time CP
F (t) and the performance

JP
F (t) of DP (F (t));

3) Keep DY (F̃ (t)) invariant.

After preliminary scheduling, the global schedule is estimated to be the preliminary schedule

DP (t) = D(S(t − 1)) + DP (F (t)) + DY (F̃ (t)).

2.3 Local scheduling for rolling window

At t, the rolling window K(t) is specified to be a set of the first k jobs from DP (F (t)), k =

min{κ, |F (t)|}, where κ is the parameter of the rolling window and used to control the size of the

rolling window, |F (t)| represents the number of jobs in F (t). The global schedule can be thought to be

DP (t) = D(S(t − 1)) + DP (K(t)) + DP (K̃(t)), where DP (K(t)) is the preliminary schedule for K(t)

and DP (K̃(t)) is the preliminary schedule for the set K̃(t), which is formed by jobs following K(t).

Local scheduling aiming at DP (K(t)) is performed based on terminal penalty (TP) sub-problem

in [2], where we just need to know the jobs of K(t) and the number of jobs in K̃(t). There is no need

for job information in K̃(t). That just adapts to the circumstance of incomplete global information.
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Let the solution for TP sub-problem be DR(K(t)). DP (K̃(t)) is shifted by ∆CR
K(t) just like that in [2],

where ∆CR
K(t) = max{0, CR

K(t) − CP
K(t)} and CR

K(t) represents the completion time of DR(K(t)). After

local scheduling, the global schedule is estimated to be the current schedule DR(t) = DR(S(t − 1)) +

DR(K(t)) + DR(K̃(t)).

The first λ(1 6 λ < k) jobs in DR(K(t)) form the set KL(t), which constitute the partial schedule

DR(KL(t)). DR(KL(t)) is fixed and merged into D(S(t − 1)) at t. The remaining partial schedule of

DR(K(t)) is denoted as DR(KL̄(t)). The completion time of DR(KL(t)) is just the physical moment

ut+1 of t + 1. DR(KL̄(t)) is left in the predictive window F (t + 1), shown in Fig. 1. DR(t) is exactly

the global previous schedule at t + 1, i.e., DY (t + 1) = DR(t).

Fig. 1 Two-level rolling scheduling strategy

Therefore, in TRSS, the rolling procedure is performed based on the first level of preliminary

scheduling and the second level of local scheduling. Preliminary scheduling is implemented for some

jobs by dispatching rules and only requires a low computational cost. Though the local scheduling

requires to optimally solve sub-problems, the sizes of sub-problems are strictly limited. Therefore, the

computational complexity of TRSS is essentially no higher than that of RHP [3].

3 Performance analysis of TRSS

In TRSS, we cannot obtain the specific value of global performance until the last decision moment

because we cannot know job information of F̃ (t). However, global performances are just intermediate

results during the rolling procedure. Actually, we pay attention to the relative varying trend rather

than the specific value of global performance. Since job sequence for F̃ (t) comes from the dummy initial

schedule that does not vary during the rolling procedure, the estimated global schedule is consistent

and the estimated global performance is comparable at different moments. For 1/ri/ΣCi, due to the

separable criteria we can decompose the global performance according to different schedule partitions.

3.1 Performance analysis of preliminary scheduling

Lemma 1. For a scheduling problem formulated as 1/ri/ΣCi, the SPT solution and the FIFO

solution have the same least completion time among all feasible solutions and the performance of SPT

solution is no worse than that of FIFO.

Proof. Assume N is the set of all jobs in a scheduling problem formulated as 1/ri/ΣCi. The

SPT solution and FIFO solution are denoted as DS and DF , respectively. Let the beginning times of

DS and DF be BS and BF , the completion times of DS and DF be CS and CF , respectively.

If for any job i ∈ N let rm = min
i∈N

ri, then BS = BF = max(u, rm), where u is the machine idle time

before process beginning. In DS or DF , because the machine will be idle only if no job arrives, they have

the same total idle time Ω for the same problem. Therefore CS = BS +
P

i∈N
Pi + Ω = CF . Because

the machine will not abandon any jobs that have arrived while waiting for a future job according to
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SPT or FIFO, no extra idle time is inserted in DS and DF . Therefore the completion time of DS and

DF are the same, which is the least completion time among all feasible schedules for N .

In the following, let a FIFO solution be DF = (1, 2, · · · , i, · · · , n), where i is the index number of

position in DF and represents the job in this position. Assume job i is the first job following job j

(i.e., ri > rj) that has pi 6 pj and ri 6 bj , where bj is the begining time of job j. Then for any job

x(j < x < i), we have rx 6 bj and px > pj . Therefore, we have pi 6 px. Because no idle time exists

between jobs j and i, exchanging the positions of job i and its previous job i − 1 will not increase the

completion times of the two jobs as well as the following jobs, and furthermore will not increase the

performance of DF . Go on exchanging i with its previous job in the same manner until exchanging i

with j. After exchanging all pair of jobs like i and j in DF , we will obtain the SPT solution DS for

the same problem. Because all such exchanges do not increase the performance, the performance of DS

will not be worse than that of DF . In addition, because the idle time in the solutions dose not vary

during exchange, DS and DF have the same completion time. �

We define this kind of consecutive exchange for jobs between i and j in the aforementioned proof

non-increasing exchange. Then we can have the following lemma.

Lemma 2. In TRSS, through non-increasing exchanges for a previous schedule, the completion

time of schedule will not vary and the performance of schedule will not increase.

Theorem 1. In TRSS, under preliminary scheduling algorithm for predictive window, the com-

pletion time CP
F (t) of DP (F (t)) is equal to the completion time CY

F (t) of DY (F (t)) and the performance

JP
F (t) of DP (F (t)) is not worse than that JF

F (t) of DY (F (t)).

Proof. According to Lemma 1, the theorem is true at t = 1. When t > 1, the previous schedule

DY (F (t)) consists of the remaining partial schedule DR(KL̄(t − 1)) and the following partial schedule

DR(K̄(t− 1)) of K(t− 1). Local scheduling cannot change DR(K̄(t− 1)), which actually is a sequence

by SPT and FIFO at t − 1. Therefore, no inserted idle time exists in DR(K̄(t − 1)). We can perform

non-increasing exchanges for DR(K̄(t− 1)) and obtain the SPT solution for K̄(t− 1), which is just the

preliminary schedule DP (F (t)). Due to Lemma 2, CP
F (t) = CY

F (t), and JP
F (t) 6 JF

F (t). �

Theorem 1 can ensure the following conclusion (proof is omitted).

Theorem 2. In TRSS, at each t, if the previous schedule DY (t) is feasible, the preliminary

schedule DP (t) is feasible and the performance JP (t) of DP (t) is no worse than the performance JY (t)

of DY (t).

3.2 Performance analysis of local scheduling

In the second level of TRSS, because the previous schedule DY (1) is just the dummy initial

schedule D̃, which is a feasible solution by FIFO, Theorem 3 can be concluded, where proof is similar

to that of Theorem 1 in [2]. We omit the proof due to the limitation of paper length. Further more

Theorem 4 is concluded due to Theorems 2 and 3.

Theorem 3. In TRSS, if the dummy initial schedule is feasible, at each t, the estimated global

schedule is feasible and the performance JR(t) of the current schedule DR(t) is no worse than the

performance JP (t) of the predictive schedule DP (t).

Theorem 4. In TRSS for dynamic 1/ri/ΣCi, as job information is predicted from one decision

moment to another, feasible dummy partial schedule is becoming a known schedule, the estimated

global schedule is always feasible at each decision moment, and the performance of estimated schedule

is reaching the ultimately realized value which is the best one among all estimated global performances.

4 Computational experiments and results analysis

In this section, the experiment consists of two parts. TP sub-problem in local scheduling was

solved by Branch and Bound developed in [4]. All procedures were coded by C language in Visual c++

6.0 and all tests ran on a computer with Pentium 4-M CPU 1.80 GHz and Windows XP operating

environment. Problems were randomly generated using a format similar to that used by [3].

In the first part of experiment, the influence of initial schedule quality on TRSS was investigated

to show the effectiveness of TRSS. Let the size of predictive horizon T = ρ ∗ TT , where ρ is the

parameter that is used to control how rapidly jobs are expected to arrive. A total of ten different ρ

values, varying from 0.20 to 3.00, were considered. The rolling parameters (κ, λ) were specified to be

(17, 2). Let TT = 400. The experiment was conducted for 50-job and 250-job problems, respectively.

Twenty problems were respectively tested for the same size problems with ten ρ values and a total of
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four hundreds problems were tested. Since the optimal solution is unlikely to be obtained for a large

size problem, FIFO and TRSS solutions were compared with the lower bound (LB) of the optimal

solution, where LB was computed according to the LB algorithm in [9]. The percentage improvement

of FIFO and SPT over LB were calculated as (FIFO-LB)/LB and (TRSS-LB)/LB, respectively. Table

1 presents the computational results, where each entry is the average coming from 20 instances of one

case.

Table 1 Average percentage improvement of FIFO and TRSS over LB

ρ 0.20 0.40 0.60 0.80 1.00 1.25 1.50 1.75 2.00 3.00

50-job problems
FIFO 38.1 36.5 22.6 16.9 6.23 3.75 3.34 1.24 0.48 0.22

TRSS 1.13 2.66 4.58 5.17 3.24 2.49 1.83 0.42 0.36 0.16

250-job problems
FIFO 43.7 36.4 25.8 17.8 12.7 1.81 1.28 0.76 0.38 0.07

TRSS 5.62 4.09 3.73 4.82 6.07 1.12 0.89 0.51 0.26 0.04

If the percentage improvement is large, it is indicated that the solution is bad. Table 1 shows that

FIFO and TRSS are getting better as ρ increases. When ρ is little, FIFO is very bad. However, the

ultimate solution after TRSS is not so bad. This phenomenon demonstrates that the worse the initial

schedule is, the larger the improvement of TRSS is. Therefore, we needn′t worry about the solution

quality of TRSS due to poor initial schedule when we just care about the ultimate solution. Whatever

the initial schedule is, the ultimate solution after TRSS is not so bad.

In the second part of the experiment, TRSS was compared with RHP to show the advantage of

TRSS. The rolling parameters (x, y, z) of RHP were specified to be (12,5,2). TRSS and RHP were used

to solve each problem respectively. If TRSS was better than RHP, the percentage improvement was

calculated as (RHP-TRSS)/TRSS. If RHP was better than TRSS, the percentage improvement was

calculated as (TRSS-RHP)/RHP. The computational results are shown in Table 2 and Table 3, where

“num.” represents the number of times of corresponding cases out of 20 problems, “ave.” represents

the average percentage improvement of the corresponding cases, and “max.” represents the maximum

percentage improvement of corresponding cases.

Table 2 Comparison of TRSS with RHP: 50-job problems

ρ
TRSS better than RHP RHP better than TRSS

Num. Ave. (%) Max. (%) Num. Ave. (%) Max. (%)

0.20 20 1.98 3.61 0 0 0

0.40 20 1.32 1.23 0 0 0

0.60 18 0.32 0.89 0 0 0

0.80 20 0.15 0.24 0 0 0

1.00 20 0.12 0.19 0 0 0

1.25 12 0.11 0.23 0 0 0

1.50 9 0.03 0.28 0 0 0

1.75 0 0 0 0 0 0

2.00 0 0 0 0 0 0

3.00 0 0 0 0 0 0

Table 3 Comparison of TRSS with RHP: 250-job problems

ρ
TRSS better than RHP RHP better than TRSS

Num. Ave. (%) Max. (%) Num. Ave. (%) Max. (%)

0.20 20 0.83 1.28 0 0 0

0.40 20 0.65 1.36 0 0 0

0.60 20 0.44 0.81 0 0 0

0.80 20 0.37 0.76 0 0 0

1.00 20 0.22 0.58 0 0 0

1.25 18 0.02 0.07 1 0.01 0.01

1.50 16 0.01 0.03 0 0 0

1.75 19 0.01 0.02 0 0 0

2.00 17 0.01 0.02 0 0 0

3.00 0 0 0 0 0 0

The results show that TRSS are consistently better than RHP for almost all ρ-value problems. In

particular, it is obviously observed that TRSS outperforms RHP for ρ 6 1.250, which is just the case

that RHP performs poorly in [3]. It demonstrates that TRSS gets a definite advantage over RHP.
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5 Conclusions

For dynamic scheduling problems formulated as 1/ri/ΣCi with incomplete global information, a

kind of two-level rolling scheduling strategy is developed. Dummy initial schedule is established to

estimate the schedule for unknown jobs. During the rolling procedure, global schedules are estimated

based on dummy initial schedule. In the first level, preliminary scheduling is performed sufficiently

utilizing known job information in a predictive window and does not increase the completion time or

the performance of predictive window. The second level is the local scheduling for the rolling window,

where jobs are selected into sub-problems based on the preliminary schedule. TP sub-problem ensures

that the current schedule is no worse than the preliminary schedule at each decision moment. The

global performance analysis demonstrates that TRSS is performed with a trend of improving the global

performance and it theoretically limits the worst cases of solution. Experiments testified that whatever

the initial schedule by FIFO was, the ultimate solution of TRSS would not be too bad. TRSS obviously

improved the solutions in problems where RHP were bad, and TRSS was consistently better than RHP

in most cases.
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