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Abstract In this paper we review the recent advances in three sub-areas of iterative learning
control (ILC): 1) linear ILC for linear processes, 2) linear ILC for nonlinear processes which are
global Lipschitz continuous (GLC), and 3) nonlinear ILC for general nonlinear processes. For linear
processes, we focus on several basic configurations of linear ILC. For nonlinear processes with linear
ILC, we concentrate on the design and transient analysis which were overlooked and missing for a
long period. For general classes of nonlinear processes, we demonstrate nonlinear ILC methods based
on Lyapunov theory, which is evolving into a new control paradigm.
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1 Linear ILC for linear systems

1.1 Why ILC

Consider a control task that requires the perfect tracking of a pre-specified target trajectory, e.g.

track following of a hard disk drive, or temperature control of wafer process. The common features of

this class of control problems are 1) task must be finished in a finite duration ranging from milliseconds

to days, 2) the target trajectory must be strictly followed from the very beginning of the execution, and

3) the task is repeated from trial to trial, from batch to batch, or in general from iteration to iteration,

under the same condition. We face a new class of control tasks: perfect tracking in a finite interval

under a repeatable control environment.

Most existing control methods including adaptive or robust control, are not suitable for such

class of tasks because of two reasons. First, these control methods are characterized by the asymptotic

convergence, thus unable to achieve a perfect tracking even if the initial discrepancy is zero. Second and

more important, they are not able to “learn” from previous task execution, whether succeeded or failed.

Without learning, a control system can only produce the same performance without improvement even

the task is repeated once again. Iterative Learning Control (ILC) was proposed to meet this kind of

control requirements[1,2]. The idea of ILC is straightforward: use control information of the preceding

execution to improve the present execution. This is realized through memory based learning.

ILC controllers can be constructed in many different ways. In this section we demonstrate four

representative and most commonly used configurations. In general, ILC structures can be classified into

two major categories: embedded and cascaded. In the following, the first three belong to embedded

structure, and the fourth one belongs to the cascaded structure.

1.2 Previous cycle learning

The configuration of a previous cycle learning (PCL) scheme is shown in Fig. 1. Here the subscript

i denotes the i-th iteration. Hence yd,i, yi, ui and ei denote the reference signal, output signal, control

signal, and error signal respectively at the i-th iteration. Gp and Gff denote the transfer functions

of the plant and the control compensator, respectively. In cases the system perform the same control

task, yd,i+1 = yd,i. The MEM labeled with y, yd and u are memory arrays storing system signals of

the current cycle, i.e. (i + 1)-th iteration, which will be used in the next learning cycle (iteration).

According to the PCL configuration shown in Fig. 1,

yi = Gpui, ei = yd − yi, ui+1 = ui + Gffei (1)

Equation (1) is the PCL updating law. It is called previous cycle learning simply because only the

previous cycle control signals ui and error signals ei are used to form the current cycle control input

ui+1. It is an open-loop control in the time domain, but a closed-loop control in the iteration domain.
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Fig. 1 The schematics of PCL

The learning convergence condition for PCL can be derived below,

ei+1 = yd − yi+1 = yd − Gpui+1 = yd − Gp(ui + Gffei) = (1 − GpGff )ei ⇒
ei+1

ei

= 1 − GpGff ⇒ ‖
ei+1

ei

‖ = ‖1 − GpGff‖ 6 γ < 1 (2)

where ‖G‖ = |G(jω)| denotes the magnitude of the transfer function at a specified frequency ω. The

norm ‖ · ‖ is defined as infinity norm for all frequencies 6 ωb and ωb is the bandwidth that may apply

to any control scheme. Clearly, as far as the tracking error signals of the 1st iteration, e0, is finite, we

have ‖ei‖ 6 γi‖e0‖ → 0 as i → ∞. It can also be seen that, for a specified threshold of the tracking

error, a smaller initial error profile e0 may expedite the learning process.

1.3 Current cycle learning

Due to the open-loop nature, PCL could be sensitive to small perturbations. This can be improved

by a feedback based learning if the loop can be closed appropriately, leading to the current cycle control

(CCL). The configuration of the CCL scheme is shown in Fig. 2.

Fig. 2 The schematics of CCL

Accordingly, the updating law of the CCL scheme is

ui+1 = ui + Gfbei+1,

where the Gfb is the transfer function of the compensator which is in fact a feedback controller. It is

called current cycle learning because the current cycle tracking error, ei+1, is involved in learning.

The convergence condition for CCL is derived as follows

ei+1 =yd − yi+1 = yd − Gpui+1 = yd − Gp(ui + Gfbei+1) = yd − Gpui − GpGfbei+1

(1 + GpGfb)ei+1 = ei ⇒
ei+1

ei

=
1

1 + GpGfb

⇒ ‖
ei+1

ei

‖ = ‖
1

1 + GpGfb

‖ 6 γ < 1 (3)
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It can be seen that PCL and CCL are functioning in a complementary manner. PCL requires the

factor ‖1 − GpGff‖ below 1 for all frequencies within the band [0, ωb], and often leads to a low gain

Gff . CCL requires the factor ‖1+GpGfb‖ above 1 for all frequencies within the band [0, ωb], and often

leads a high gain Gfb. Note that the memory arrays required for CCL are half of the PCL.

1.4 Previous and current cycle learning

Generally speaking, it may be a difficult job to find a suitable Gff such that the (2) is satisfied,

i.e., ‖1 − GpGff‖ is strictly less than 1 for all frequencies in [0, ωb]. Likewise, it may be a difficult job

to find a suitable Gfb such that the denominator in (3) is strictly larger than 1 for all frequencies in

[0, ωb]. There is only 1 degree of freedom (DOF) in the controller design for both schemes. By pairing

PCL and CCL together, there is a possibility that the learning convergence will be improved. This

can be achieved if the convergence conditions (2) and (3) can complement to each other at frequencies

where one convergence condition is violated. There are several ways to pair the PCL and CCL, and a

possible combination is shown in Fig. 3.

It can be easily derived that the convergence condition is

‖1 − GpGff‖

‖1 + GpGfb‖

that is, the multiplication of both conditions of PCL and CCL. To demonstrate the advantage of the

2 DOF design with PCCL, an example is shown in Fig. 4, where 1 − GpGff = s2 − 3
3s2 + 3s + 5

and

1/(1 + GpGfb) = s2 + 20s + 80
2s2 + 10s + 130

. Note that neither the PCL condition (2) nor the CCL condition

(3) holds for all frequencies, but the convergence condition with the integrated PCCL, which is the

superposition of PCL and CCL in Bode plot, does hold for all frequencies.

Fig. 3 The schematics of PCCL Fig. 4 The complementary role of PCL and CCL

1.5 Cascaded ILC

In the previous three ILC schemes, one may observe that the control system has been redesigned,

with a new feedforward component added to the system input channel. From the configurations shown

in Fig. 1, 2 and 3, a new control block is embedded into the control loop. Such an embedded structure is

the common structure for most existing ILC schemes. Hence, if an ILC mechanism is to be incorporated

into an existing control system, either the core execution programme needs to be rewritten or the micro-

controller chip needs to be replaced. In many real applications, such a re-configuration of a commercial

controller is not acceptable due to the cost, security and intellectual property problems. For instance,

a rapid thermo-processing device in wafer industry costs millions of dollars, and the only tunable part

is a number of set-points. In such circumstance, the cascaded learning method is suitable as it modifies

only the reference trajectory iteratively to improve the control performance.
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The schematics of such an ILC is demonstrated in Fig. 5.

It can be seen that the ILC block is “cascaded” to the existing control loop. The ILC with

cascaded structure will use the modified reference signals and the actual system output of previous

cycle to generate the new reference signals for the current cycle. Owing to the cascaded structure, the

ILC need not be embedded into the existing control loop, thus avoids any reconfiguration of the system

hardware. What is needed is essentially some re-programming of reference signals, which can be easily

carried out in real applications.

Fig. 5 The schematics of a cascaded structure ILC

According to Fig. 5, we have

yi = Gyd,i, ei = yd − yi, yd,i+1 = yd,i + Gffei, yd,0 = yd (4)

where G =
GpGfb

1 + GpGfb
denotes the closed-loop transfer function; yd is the original reference repeated

over a fixed operation period; yd,i is the reference signal modified via learning for the control loop.

According to the learning control law (4), the convergence condition for the cascaded structure ILC

can be derived as

ei+1 = yd − yi+1 = yd − Gyd,i+1 = yd − G(yd,i + Gffei) = yd − Gyd,i − GGffei = (1 − GGff )ei

⇒
ei+1

ei

= 1 − GGff ⇒ ‖
ei+1

ei

‖ = ‖1 −
GpGfbGff

1 + GpGfb

‖ 6 γ < 1

In most cases the cascaded ILC is of PCL type, because set points, once selected, cannot be

changed in the midst of real-time operation.

2 Linear ILC for nonlinear systems

In this section, we consider linear ILC schemes for nonlinear dynamical systems. Consider the

following dynamical systems

ẋ(t) = f (x(t), u(t), t), x(0) = x0, y(t) = g(x(t), u(t), t) (5)

where t ∈ [0, T ], x(t) ∈ Rn, y(t) ∈ R and u ∈ R, f (·) is a smooth vector field, and g(·) is a smooth

function.

Under the repeatability of the control environment, the control objective for ILC is to design a

sequence of appropriate control inputs ui(t) such that the system output yi(t) approaches the target

trajectory yd(t), ∀t ∈ [0, T ]. In Arimoto’s first ILC article[1] a typical yet the simplest linear-type

first-order iterative learning control scheme is proposed

ui+1(t) = ui(t) + β∆yi(t) (6)

where ∆yi = yd − yi, and β is a constant learning gain. The initial control profile u0(t), t ∈ [0, T ] is

either set to zero or initialized appropriately by some control mechanism. The convergence condition

is determined by the relation

|ui+1|λ 6 |1 − βgu||ui|λ, |1 − βgu| = γ < 1 (7)
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where gu(x, u, t) =
∂g
∂u

, and | · |λ is the time weighted norm defined as max
t∈[0,T ]

e−λt| · |. The controllability

condition is that the system gain gu ∈ [α1, α2], either α1 > 0 or α2 < 0. By choosing a proper learning

gain β, the convergence condition (7) can be fulfilled if the interval [α1, α2] is known a priori.

There are two conditions indispensable in linear-type ILC: the global Lipschitz continuity condition

(GLC) and resetting condition, which are summarized below.

1) f (x, u, t) and g(x, u, t) are global Lipschitz continuous with respect to x and u.

2) identical initialization condition (i.i.c.) yi(0) = yd(0).

Mathematically we know that GLC guarantees the existence and uniqueness of the differential

Equation (5) for any initial value. In ILC theory, the importance of GLC lies in that there is no finite

escape time if input is finite. Therefore a typical iterative learning process, characterized as open-loop

control, can be carried on in a finite interval without concerning time domain stability or convergence.

The identical initialization condition, one fundamental assumption of ILC, has been criticized by

control experts from different disciplines. This condition, however, cannot be relaxed if the perfect

tracking is pursued.

2.1 Robust optimal design

The popularity of H∞ control is in large owing to its systematic robust optimal design. A pure

robust design may give too much weight on stability issue and sacrifice the performance. On the

contrary, a pure optimal design could be sensitive to system uncertainties. We need a robust optimal

design for ILC, wherever applicable. The most challenging task is, can we design a robust optimal

ILC for highly nonlinear systems such as (5)? Any control theory would not be complete without a

systematic design. On the other hand, it is perhaps one of the hardest jobs for nonlinear uncertain

systems. The task is highly related to the selection of performance index or the cost function, and

types of system uncertainties. Here we will show one such robust optimal ILC design for the system

(5), which is to maximize the convergence speed under an interval uncertainty[3]. The ILC design can

be formulated into a min-max optimization problem with a systematic solution. The max operation is

to maximize the influence from the system uncertainty, and min operation is to minimize a learning

factor that determines the convergence speed.

The convergence speed is determined by the relation

|ui+1|λ 6 γ|ui|λ (8)

and the slowest one is given by |ui+1|λ = γ|ui|λ. Let us define a “characteristic equation” in the

iteration domain that specifies the convergence speed

z − γ = z − |1 − βgu| = 0 (9)

The smaller the γ, the faster the convergence speed. However the value of γ depends on the unknown

system gain gu which could be nonlinear, uncertain and varying in the interval D = [α1, α2]. The

learning gain β should be designed in such way that γ is the lowest in the presence of the interval

uncertainty.

This problem can be formulated mathematically as the following min-max problem:

J = min
β∈R

max
gu∈D

|1 − βgu|, D = [α1, α2]. (10)

Note that the min-max operation achieves the robust optimal design, as the min operation realizes the

fastest convergence speed by minimizing γ, and the max operation considers the worst case learning

convergence by maximizing the influence from gu.

To facilitate discussion for various ILC schemes, consider the following robust optimization prob-

lem which includes (10) as a special case:

J = min
β∈R

max
gu∈D

|p − βgu|, p ∈ R (11)

The above learning convergence factor |p − βgu| is corresponding to the following iterative learning

scheme

ui+1(t) = pui(t) + β∆yi(t) (12)
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with p a weighting factor in general, and a forgetting factor in particular when p ∈ (0, 1). The solution

of (11) is given in the following Proposition.

Proposition 1[3]. When β =
2p

α2 + α1
, J = min

β∈R
max
gu∈D

|p − βgu| reaches its minimum

γ∗ = |p|
α2 − α1

α2 + α1
(13)

γ∗ gives the fastest convergence response of ILC. To achieve perfect learning, it is necessary that

p = 1. Consequently γ∗ = α2 − α1
α2 + α1

. Most existing ILC schemes deal with the interval uncertainty

gu ∈ [α1, α2] in a conservative manner by setting (assume α1 > 0)

β =
1

α2

In such case the range of the convergence factor is

0 6 |1 − βgu| 6
α2 − α1

α2

It is immediately obvious that
γ∗ =

α2 − α1

α2 + α1
<

α2 − α1

α2

Although both designs consider the worst case, the robust optimal design can reduce the convergence

factor by 50% in the extreme case α1 → α2.

2.2 Transient analysis

ILC achieves the perfect tracking over the interval [0, T ], namely achieves a perfect transient

response in the time domain. However, it may encounter another transient behavior along the iteration

axis. It is well known that a convergent sequence may produce an unacceptable transient response. A

numerical example[4] demonstrates that a convergent sequence in the iteration domain could have the

worst case error bound above 100200!

In classical control, the transient performance are evaluated in terms of settling time, overshoot,

critical/overdamped or oscillatory response. In iteration domain it is necessary to quantify the tran-

sient performance in a similar way. It was proposed to evaluate an iterative process in terms of the

convergence speed, the global uniform bound (maximum tracking error), and the maximum monotonic

convergence interval[3]. Generally speaking, it is very difficult to evaluate the transient behavior of a

nonlinear process, and it is even tougher for ILC because of the performance along the time axis and

iteration axis.

The convergence speed has been partially solved by introducing a new metric – Q-factor which

is originally used to evaluate iteration algorithms in numerical analysis[5]. By means of the Q-factor,

together with the robust optimal design, we are able to quantify the learning convergence speed of

various ILC schemes. Let us briefly mention two such results associated with Q-factor.

First is concerned with a controversial issue: can a high order ILC scheme outperform a lower

order ILC. Ever since the first article regarding high order ILC[6], it was acknowledged that a high

order ILC can improve learning speed. Intuitively, a higher order ILC, that employs preceding control

information of more than one iteration, should be able to improve learning performance as more of

preceding control information is used. However, a simple linear combination of preceding control

information may not be able to generate or provide anything new information. What is more, for a

convergent ILC sequence, in most iterations the latest should be the most accurate and the rest are

less. A linear combination of less accurate ones seems only to degrade the performance.

Later it was found that the solution of a 2nd order ILC discussed in[6] does not exist. It was

still unclear about the general situations until the concept of Q-factor and the min-max design were

proposed. The conclusion[3] was, the convergence speed of lower order ILC is always faster than that

of higher order ILC in terms of the time weighted norm.

The second is concerned with three ILC algorithms of the linear, Secant and Newton types.

Quantified evaluation based on Q-factor tells us that, by introducing a nonlinear gain such as the

Secant or Newton type ILC, the learning convergence can be greatly expedited[4].

Another hot topic of ILC is: can an ILC algorithm warrant a monotonic convergence along the

iteration axis. Without such a warranty, one cannot help worrying about whether the tracking error
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could reach a level of 10200 during the transient period. Transient behavior is an open problem not

only for ILC, but also for most control methods, and is difficult to analyze even for linear systems.

Recently the time domain dynamical impact to the iteration process was exploited[3]. As far as

a PCL type ILC is concerned, the time domain stability is not guaranteed because of the open-loop

nature. In such circumstance, a divergent dynamics can be suppressed by the time weighted norm

which has an attenuation factor along the time axis, e−λt, if λ is sufficiently large.

A few questions naturally arise. First, λ is neither a system parameter nor a design parameter, is

the learning convergence really depending on it? Second, what may happen if a small λ is considered

for the time weighted norm, or in other words, when the dynamic impact is not ignored? Third, how

large could be the dynamic impact to the learning convergence, can we really ignore it? Most ILC works

end by assuming a sufficiently large λ, which results in a monotonic convergence in the time weighted

norm. In order to make clear the underlying relationship between λ and system dynamical behavior,

some work was done with the objective to quantify λ, which leads to several interesting findings[4].

If we use | · |λ with a sufficiently large λ as a yardstick to measure the learning process, ILC

is guaranteed to converge monotonically over the entire time interval [0, T ]. If however a smaller λ

is employed, ILC can only guarantee the monotonic convergence over a subinterval [0, T1] ⊂ [0, T ]

according to such a norm | · |λ. A smaller λ indicates a more restrict assessment to the system perfor-

mance. It is possible to compute the minimum λ required to generate a monotonic convergence over

[0, T ] assessed by | · |λ. On the other hand, consider the extreme case where λ → 0, which in fact

leads to the supreme norm. It is able to estimate the maximum interval [0, T1] on which the learning

converges monotonically in the supreme norm | · |.

Looking at the relationship between the two norms |·|λ and |·|, and the minimum λ, the maximum

tracking error bound can be estimated by

| · | 6 | · |λeλT

2.3 Old problems and new solutions

The GLC condition and the identical initialization condition are two fundamental postulates

which lay the foundation for the entire ILC framework. These two conditions, however, greatly confine

the applicability of ILC, often incur criticism. Can we remove these two conditions? The answer is

no for classical ILC based on contractive mapping. GLC prevents the control system from the finite

escape time phenomenon, and i.i.c. ensures that the learning convergence can be achieved from the very

beginning. Counterexamples were given to show the divergent response without these two conditions[4].

Classical ILC methods, no matter PCL, CCL or PCCL, all belong to contractive mapping. The

ILC law links two iterations and results in a contractive mapping between two consecutive iterations

as |ei+1|

|ei|
6 γ < 1

Classical ILC does not use the system dynamical knowledge such as f (x, u, t), and does not bother

to design a stable closed-loop in the time domain. In fact, if we restrict ourselves to the present ILC

framework, the asymptotic convergence along the iteration axis in |·|λ is perhaps the best we can expect.

Look at the linear-type ILC schemes (6), which is almost model free. The only system knowledge used

is gu ∈ D, regardless of the highly nonlinear, non-affine and uncertain dynamics. It also focuses on one

of the most difficult control tasks: perfect tracking over the entire time interval [0, T ] using only the

static output control. We cannot be too demanding with so less system information and so general a

control objective.

The only way to relax the two postulates is to incorporate more of system knowledge in ILC

design. Comparatively GLC is easier to be generalized, and i.i.c. is related to the system repeatability

which is more fundamental. In next Section we demonstrate how to design a nonlinear ILC by fully

making use of the system dynamical knowledge, in the sequel successfully deal with local Lipschitzian

functions.

3 Nonlinear ILC for nonlinear systems

Consider a dynamics with local Lipschitzian nonlinearity

ẋ = θ(t)x2 + u, x(0) = x0 (14)
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where θ(t) ∈ C[0, T ].

Let the target trajectory be xd(t), the nonlinear iterative control law is

ui = kei + ẋd − θ̂i(t)x
2
i (15)

and the nonlinear parametric learning law is ∀t ∈ [0, T ]

θ̂i(t) = θ̂i−1(t) − x2
i (t)ei(t), θ̂−1(t) = 0 (16)

where ei = xd − xi.

To analyze the learning convergence, the following Lyapunov functional is used

Vi(t) =
1

2
e2

i (t) +
1

2

∫ t

0

φ2
i (τ )dτ. (17)

where φi = θ − θ̂i. It can be proven[7] that ei(t) converges to zero pointwisely as i → ∞.

In the following we will briefly demonstrate several new features achieved by this class of nonlinear

ILC.

3.1 Quasi-optimal ILC

Aiming at balancing control performance vs control effort, nonlinear optimal control has been the

active subject of considerable research work over the past few decades[8]. By applying the standard

dynamic programming, the optimal control can be converted to the problem of solving partial differen-

tial equation known as Hamilton-Jacobi-Bellman (HJB) equation. There are however two obstacles in

achieving optimal ILC. First, it is difficult to find the closed form optimal control for general nonlinear

systems because of the difficulty in solving the nonlinear partial HJB differential equation. Second,

ILC by default is supposed to handle systems with uncertainties.

To avoid the first obstacle, a suboptimal control strategy based on control Lyapunov function and

Sontag’s formula[9] is used, which provides a suboptimal performance as well as stability along time

horizon for a broad class of nonlinear dynamic systems. Regarding the second obstacle, we assume that

the system dynamics can be separated into a nominal part and an uncertain part as below

ẋi = fi + θ(t)x2
i + ui (18)

where fi = f(xi, t) is a known smooth function, and considered as the nominal part. The suboptimal

control law will be designed based on the system nominal part

ẋi = fi + ui (19)

and the ILC with pointwise adaptation mechanism is to address the uncertain part θ(t)x2
i as before.

It should be noted that fi can be easily canceled out by incorporating a term −fi in the system

input ui. Cancelation is nevertheless a passive way whereas optimal design is an active way of making

use of the system knowledge fi. For example, if fi = Axi, we can construct a linear quadratic optimal

controller accordingly. Besides, in many practical systems the nominal part consists of either linear or

nonlinear damping term, which is a stabilizing force. If fi is much smaller than θ(t)x2
i , the effect of

optimality may be minor. Indeed, if the system is predominant by the uncertain part, other control

methods such as robust control, adaptive control or ILC instead of optimal control should be used. On

the contrary, if the nominal part dominates, the effect of optimality becomes obvious. Often we cannot

tell which is dominant in practice, then it should be no harm to let ILC and optimal control coexist.

Consider a particular case fi = −x3
i which is a nonlinear damping. The error dynamics under

iteration is

ėi = ẋd + x3
i − θ(t)x2

i − ui (20)

The nominal part of the error dynamics is f̄i = ẋd + x3
i . The objective function of optimal control is

J = inf
ui

∫ T

0

[q(ei) + u2
i ]dt (21)
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If it is possible to solve the following HJB equation

q(ei) −
1

4
(
∂V ∗

∂ei

)2 +
∂V ∗

∂ei

f̄i = 0 (22)

to find the closed form of the value function V ∗, the optimal control is given as

u∗ = −
1

2

∂V ∗

∂ei

However it is not an easy job to solve the HJB equation. Hence the Sontag’s formula is introduced to

provide a suboptimal solution to the nonlinear system (20) as follows

uop,i = f̄i +
√

(f̄i)2 + q(ei)sign(
∂V

∂ei

) (23)

where sign(·) is the signum function, and V is an arbitrary Lyapunov function (in general Control

Lyapunov Function). It can be seen that the idea of the suboptimal control with Sontag’s formula is to

use a Lyapunov function V to replace the value function V ∗ = infui

∫ T

t
[q(ei) + u2

i ]dt which is hard to

solve from the HJB equation. It is also worth to note how the nonlinear nominal part f̄i is incorporated

in the suboptimal control law (23), which is not merely a simple cancelation.

Quasi-optimal ILC is achieved by combining the suboptimal control and ILC simply in an additive

form,

ui = uop,i + ul,i, ul,i = kei − θ̂i(t)x
2
i , θ̂i(t) = θ̂i−1(t) − x2

i ei (24)

where ul,i is the learning part with pointwise parametric adaptation.

The closed-loop performance will depend on the selection of the weighting function q(ei). A large

q(ei) implies more penalty on the tracking error, consequently leads to a faster convergence at the price

of large control signals. It offers extra design degree of freedom, in a sense like the LQR, although the

control problem is far more difficult[10].

3.2 New findings

3.2.1 Learning from different reference trajectories

That the target trajectory must be uniformly identical for all iterations is one of the fundamental

conditions, hence one of the fundamental constraints, for all kinds of ILC schemes. Now we move one

step forward – let ILC mechanism learn from different target trajectories, that is, trajectories may vary

from iteration to iteration. There were some pioneer work[11,12] , which are in essence a Least Square

approach. The limitation of those methods are the demand for accurate information of control input

and output signals of previous trials. Can we let ILC start from scratch and converge even if the target

trajectory xd,i ∈ C1[0, T ] may vary at each iteration?

If the i.i.c. condition is satisfied, i.e. xi(0) = xd,i(0), this problem is rather straightforward under

the framework of Lyapunov Functional[13]. The error dynamics is

ėi = −θ(t)x2
i + ẋd,i − ui, ei(0) = 0 (25)

The only change is from the identical trajectory xd to the iteration dependent xd,i, which are never-

theless known to us. Accordingly the control law is

ui = kei + ẋd,i − θ̂i(t)x
2
i (26)

and the parametric updating law remains the same as (16).

Since xd,i is now iteration i-dependent, generally speaking it cannot be treated through learning.

The pointwise adaptation, as a functional approximation process, works only for iteration i-independent

functions, such as θ(t). This clearly shows the learnability of nonlinear ILC.

3.2.2 Relaxation of i.i.c.

Now we return to the most difficult issue: can we remove the identical initialization condition,

which has been with us all the way. From the differential equation theory, the initial condition will

determine the solution trajectory of a nonlinear dynamics. A tiny discrepancy in initial conditions

may lead to completely different solutions. However, a perfect initial resetting requires that the control
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system be equipped with a precise homing mechanism, which may not be possible for many practical

engineering systems.

Note that in classical ILC, the control objective is output tracking and the state variables are

assumed neither available nor manoeuvrable. In nonlinear ILC, however, we make full use of the

system knowledge especially concerning state dynamics. This opens a new avenue: replacing the i.i.c.

with a less restricted initial condition – alignment condition – and meanwhile achieving the convergent

property[14]. The alignment condition is simply xi(0) = xi−1(T ), i.e. the end state of preceding iteration

becomes the initial state of the present iteration. In addition to this, we also need xd(0) = xd(T ). The

rationale of the new condition can be easily perceived: we restart from wherever we stopped at. In the

sequel we can avoid doing the extra task of bringing the system back to a specific place.

Let us further exploit this key issue. The identical initialization condition in ILC usually implies

both spatial resetting and temporal resetting. While time resetting is natural for a task to be finished

and repeated over a finite period, the spatial resetting is however not an easy job and not so imperative.

Note that it is the spatial resetting which gives rise to extra implementation difficulty and incurs

criticism.

Consider a target trajectory xd(t) ∈ C1[0, T ], which forms a continously spatial path. When do

we need the spatial resetting? It is necessary only when the spatial path of the target trajectory is

not completely closed, i.e. xd(0) 6= xd(T ). For instance, xd(t) = t, t ∈ [0, 1]. In such circumstance, a

perfect tracking will lead to xi(T ) = xd(T ) 6= xd(0). Hence an independent control mechanism must

work appropriately between two consecutive iterations so as to bring back the system state to the initial

position xd(0).

For any trajectories spatially closed, i.e. xd(0) = xd(T ), we can use the alignment condition and

remove the spatial resetting requirement, as discussed above.

3.2.3 Extention to repetitive tasks

By relaxing the spatial resetting to the alignment condition, we can now extend ILC to repetitive

control tasks – either tracking a periodic trajectory or reject a periodic disturbance over [0, ∞). Let

us exhibit how to convert a repetitive control task into an ILC task[14]. Consider the target trajectory

xd(t) ∈ C1[0, ∞) with the periodicity xd(t) = xd(t − T ). Assume that θ(t) is also periodic with the

same period T . Define the state xi(t) = x((i − 1)T + t), ∀i = 1, 2, · · ·. By virtue of the continuity,

x(iT ) is the end point of the i-th iteration defined over [(i − 1)T, iT ], and also the initial point of

the (i + 1)-th iteration defined over [iT, (i + 1)T ]. Note that the alignment condition is met because

xi(T ) = xi+1(0) is in fact the same point x(iT ). Thus the original control problem is equivalent for

xi(t) to track xd(t) over the period [0, T ], and the ILC can be directly applied.

What can we gain by converting a repetitive control problem into ILC problem? First of all,

ILC is now able to handle periodic signals defined in infinite horizon, hence cover repetitive control

problems. Second, ILC based on Lyapunov functional is able to handle more general classes of system

nonlinearities and uncertainties. Indeed, the convergence analysis of classical repetitive control is mainly

based on small gain theorem, quite similar to the contraction mapping, consequently the application is

rather limited.

4 Concluding remarks

ILC methods offer two degrees of freedom: one in time domain and another in iteration domain.

A typical ILC evolving only in iteration domain avoids sophisticated feedback design and stability

analysis in time domain, but the resulting ILC may not possess any robustness in time domain. By

incorporating feedback in ILC, the learning process is more robust in time domain, however there is

no warranty that iteration domain performance can also be improved by this feedback. The inherent

relationship between two domains remains open for us to further explore.

Also, like other control methodologies, there are numerous problems open in ILC field. Some are

concerned with the system geometric properties, such as the relative degrees, dissipativity, etc. Some are

concerned with the system control, such as the optimality in both time and iteration domains. Some

are concerned with implementation issues, such as measurement noise, sampling, input saturation,

deadzone, etc. Some are concerned with the control tasks, such as non-uniform tracking, pseudo-

periodicity, etc.
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Despite all the difficulties, many researchers are fighting hard and developing new ILC approaches,

such as backstepping[15,16], stochastic ILC[17,18], etc. ILC is a relatively new research area and can be

easily integrated with any other control methods under the system repeatability. Hence the readers of

this introductory article, once plowing in the ILC field, can expect harvest from two aspects: either

incorporating the concept and methods of ILC into their own fields to improve the performance, or

incorporating their favorite methods into ILC to come up with a new control method.
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