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Abstract Many industrial processes have compositive complexities including multivariable, strong
coupling, nonlinearity, time-variant and operating condition variations. Combining multivariable
adaptive decoupling control with neural networks, this paper presents a multivariable neural network-
based decoupling control algorithm. This control algorithm is integrated with distributed control
technique and intelligent control technique, and a three-leveled intelligent decoupling control system
consisting of basic control level, coordinating control level, and management and decision level is
developed. The configuration and function of the control system are discussed in detail. This system
has been successfully applied in ball mill pulverizing systems of 200MW power units, and remarkable
benefits have been obtained.
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1 Introduction

In many complex industrial processes, the coupling among control loops often invalidates con-

ventional single-loop controllers. How to achieve decoupling control of such processes has become a

topic of considerable importance in the field of control engineering. Decoupling control was initially

developed for deterministic linear systems. Typical approaches include design of pre-compensator that

transforms the controlled transfer function matrix into a diagonal matrix or diagonal dominance[1], de-

sign of state feedback to reach decoupling of state equation[2], decoupling in frequency domain through

inverse Nyquist array[3], and decoupling method of Bristol-Shinskey[4].

These approaches separate the controlled multivariable system into several SISO subsystems

through a suitable decoupler that depends on accurate process model before controller design. So

they are difficult to reach adaptive decoupling control of complex industrial processes that are multi-

variable, strongly coupled, with unknown or slow time-variant parameters. In [5] and [6], multivariable

adaptive decoupling controllers were presented which combined decoupling design with self-tuning con-

trol. Adaptive decoupling control algorithm based on zero and pole placement was developed in [7]. In

the approaches of [8∼16], the coupling effects among control loops were viewed as measurable distur-

bances so that they can be eliminated through feedforward compensation, and decoupling is achieved.

In [14, 15, 17], multivariable adaptive decoupling control techniques were reported being successfully

applied in a metallurgic furnace, a binary distillation column, and a vertical loop of continuous bar

mill.

Recently, control engineers and scientists have paid more attention to the problem of how to reach

decoupling control of complex processes that are multivariable, strongly coupled, strong nonlinear,

and time-variant. Direct and indirect decoupling control algorithms were developed through fuzzy

approaches in [18∼20], while decoupling control algorithms based on neural networks were discussed in

[21, 22]. Such algorithms are complicated, and difficult to realize in engineering practice. Distributed

Control Systems (DCS) become more and more popular in industrial process control because of their

strong reliability. In such cases, multivariable industrial processes are often partitioned into many

SISO subsystems by control engineers so that standard control modules in DCS can be used. But

inherent strong coupling effects usually result in bad performances of such controllers or even controllers

unusable. It is vitally important to develop intelligent decoupling control systems that are applicable

in DCS.
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This paper combines the decoupling algorithm in [10] with neural networks and develops a neural

network-based multivariable decoupling control algorithm and a three-leveled intelligent decoupling

control system. The latter has been successfully applied in ball mill pulverizing systems of 200MW

power units, and remarkable benefits have been obtained.

2 Multivariable neural network-based decoupling control algorithm

The process to be controlled is assumed to be a general k-input-k-output nonlinear multivariable

system described by

y(t + 1) = f [y(t − n + 1), · · · , y(t),u(t − m), u(t)] (1)

where y(t) = [y1(t), · · · , yk(t)]T ∈ Rk, u(t) = [u1(t), · · · , uk(t)]T ∈ Rk are the process output and input

vectors, respectively; n and m are the system’s orders; f [·] = [f1[·], · · · , fk[·]]T is a nonlinear vector

function which is continuously differentiable and Lipshitz.

Using the methods of [10, 22], the original plant can be transformed through Taylor’s expansion

at the equilibrium point into the following form of

A(z−1)y(t + 1) = B(z−1)u(t) + v(t) (2)

where A(z−1) is a diagonal polynomial matrix, and B(z−1) is a non-diagonal polynomial matrix, and

v(t) represents the high order nonlinear term and unmodeled dynamics. Then B(z−1) is separated into

B(z−1) = B̄(z−1)+
=

B (z−1)

where B̄(z−1) is a diagonal polynomial matrix, and
=

B (z−1) is a polynomial matrix with zeros on its

diagonal. Thus (2) can be rewritten as

A(z−1)y(t + 1) = B̄(z−1)u(t)+
=

B (z−1)u(t) + v(t) (3)

Introduce the following performance index

J =‖ P (z−1)y(t + 1) − Rw(t) + Q(z−1)u(t) + Su(t) + Kv(t) ‖2 (4)

where w(t) ∈ Rk is the known reference signal vector, P (z−1) and Q(z−1) are (k×k) diagonal weighting

polynomial matrices, R and K are (k × k) diagonal weighting matrices, and S is a (k × k) weighting

matrix with zeros on its diagonal.

The auxiliary output vector φ(t + 1) and the ideal output y∗(t + 1) are defined as

φ(t + 1) = P (z−1)y(t + 1) (5)

y
∗(t + 1) = Rw(t) − Q(z−1)u(t) − Su(t) − Kv(t) (6)

Introduce the (k × k) diagonal polynomial matrices F (z−1) and G(z−1) satisfying

P (z−1) = F (z−1)A(z−1) + z−1G(z−1) (7)

and the optimal control law minimizing (4) is given by

[F (z−1)B(z−1) + Q(z−1) + S]u(t) = Rw(t) − G(z−1)y(t) − [F (z−1) + K]v(t) (8)

The closed loop system becomes

[P (z−1)B̄(z−1) + Q(z−1)A(z−1)]y(t + 1) =

B̄(z−1)Rw(t) + [Q(z−1)
=

B (z−1) − B̄(z−1)S]u(t) + [Q(z−1) − B̄(z−1)K]v(t) (9)

where P (z−1), Q(z−1), R, S and K can be chosen satisfying

[P (1)B̄(1) + Q(1)A(1)] = B̄(1)R (10)

Q(1)
=

B (1) = B̄(1)S (11)

Q(1) = B̄(1)K (12)
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|P (z−1)B(z−1) + A(z−1)[Q(z−1) + S]| 6= 0, |z| > 1 (13)

then steady tracking errors can be eliminated and static decoupling is achieved.

When the model of the process is unknown, we excite the process using small noise signals around

the equilibrium point, and the input-output data are collected as the training set. So k BP neural

networks with single hidden layer and linear output can be obtained to approximate the plant (1) in a

neighborhood of the equilibrium point after thorough offline training. Not only can a neural network

approximate arbitrary nonlinear analytic function, but also it can approximate the derivatives of that

function, so we can obtain the estimated values of A(z−1) and B(z−1), denoted by Â(z−1) and B̂(z−1).

Then we use another k neural networks to approximate v(t) on-line, which represents the high

order nonlinear term and unmodeled dynamics,

v̂i(t) = NNi[Wi, x(t)] for i = 1, . . . , k (14)

where Wi denotes the weighting matrix of neural network NNi, x(t) is the input vector. The neural

network-based decoupling control algorithm employing the optimal control law of (7) and (8) can be

summarized as follows:

Step 1. Substitute Â(z−1) and B̂(z−1) for A(z−1) and B(z−1), chose proper P (z−1), Q(z−1), R,

S, and K so that (10)∼(13) are satisfied;

Step 2. Read input-output data to construct x(t);

Step 3. Estimate the term of v̂i(t) using neural network NNi;

Step 4. Calculate the control input u(t) using (8), and impose it on the process;

Step 5. Get the new output of the process, y(t + 1);

Step 6. Obtain the tutorial signal about v(t) from calculation with y(t+1), and then train NNi

once, for i = 1, . . . , k;

Step 7. Let t = t + 1, and go to step 2.

When the process is slowly time-variant, we can identify A(z−1) and B(z−1), chose P (z−1),

Q(z−1), R, S, and K online, estimate v(t), and calculate the control input through (7) and (8), so that

adaptive decoupling control is achieved.

3 Multivariable intelligent decoupling control system

Modern industrial processes usually have

compositive complexities including multivari-

able, strong coupling, strong nonlinearity,

time-variant, with large time delay, and large

variations of operating conditions. Academic

control algorithms are often proposed for sin-

gle complexity. Only integration of related

control algorithms can effectively solve the au-

tomatic control problems of industrial pro-

cesses with compositive complexities. Thus,

studying on the architecture of decoupling

control system becomes vitally important.

With DCS as its hardware platform, an

intelligent decoupling control system consist-

ing of basic control level/coordinating control

level/management and decision level is devel-

oped. Its structure is shown in Fig. 1.

Fig. 1 Architecture of multivariable decoupling

control system

3.1 Basic control level

The basic control level is at the lowest level in the control system architecture. It consists of

loop controllers and an intelligent decoupling compensator and is responsible for decoupling and loop

control. From (9) it can be known that decoupling control can be achieved through the compensation

of coupling terms, high order nonlinear terms and unmodeled dynamics. Equivalently, one can realize

decoupling control through adding the compensation signal on the relevant control input as shown in
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Fig. 2. This is the base of implementation decoupling control with DCS configuration software. First,

the multivariable process is partitioned into n SISO loops properly, and relevant loop controllers using

DCS configuration software are designed. Then, above mentioned intelligent decoupling compensator

using the neural network-based decoupling algorithm are designed.

Fig. 2 The structure of the decoupling controller in the basic control level

3.2 The coordinating control level

The coordinating control level is at the middle level in the control system architecture. It consists

of a setpoint optimizer and a self-tuner. It is responsible for adaptation to process uncertainty to realize

optimizing control of the process. The setpoint optimizer in the coordinating control level gives optimal

setpoints to the basic control level to reach optimization of integrated production index of the controlled

process according to variations of operating conditions and boundary conditions. The optimization of

setpoints of loop controllers has tight relationship with raw material consumption, energy consumption

and production quality. For the process operation, the optimizing control of loop controllers’ setpoints

aiming at optimization of integrated production index is more significant than conventional optimal

control aiming at controller performance. Besides, sometimes variations of operating condition might

result in some control variables in saturation status, so the number of available control inputs becomes

less than normal condition. By modifying these setpoints online in certain ranges, the relevant loop

controllers may be coordinated so that the whole process can be stabilized using less control inputs.

Thus the control system may have certain adaptability.

The other task of the coordinating control level is to modify the parameters of controllers or

decouplers in the basic control level using the self-tuner after the uncertainty of time-variant parameters

of the process is detected.

3.3 The management and decision level

The management and decision level is at the highest level in the control system architecture.

It consists of such modules as discriminator, identifier and decider. It identifies the operating condi-

tions through case-based reasoning, makes adequate decision about current control target according to

current operating condition and tuning ability, and chooses proper control strategy.

The discriminator makes judgments about current situation of control system according to current

process data , suck as process outputs, control inputs, setpoints, tracing errors and their variance ratio,

etc.

The identifier is used to identify the operating conditions directly through case-based reasoning.

Using the information from the discriminator, this identifier can judge what status the process is in.

The decider makes the final decision about control strategy according to the conclusions about

the operating conditions drawn by the identifier. Three decision criteria with different priorities from

highest to lowest are safety, quality and efficiency. As soon as higher criterion is activated, i.e. the

current operating condition cannot satisfy the higher criterion, all lower criteria will not be under

consideration temporarily. After adequate control actions have been imposed on the process and the

results satisfy the higher criterion, the decider begins to consider the lower adjacent criterion.

Safety criterion is the most important criterion to guarantee the security of the controlled process.

The management and decision level examines at any moment precursors about actuator failures, inval-

idation of control strategy and abnormal operating conditions. When such precursors appear, a series

of actions must be taken as follows: the current control algorithm must be suppended, the emergency

handling module is activated to protect the process and the operating support system is activated so
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that human operators can be indicated properly. Quality criterion is designed to guarantee quality of

product and stability of process. It requires that all the outputs of the process must be kept in certain

ranges respectively which are specified by technical specifications. When the above two criteria are

both satisfied, the efficiency criterion is then activated to reach optimization of integrated production

index, the setpoints of basic loop controller are optimized through the coordinating control level.

4 Application of intelligent decoupling control system in ball mill pulverizing systems

4.1 Process description and its model

Ball mill pulverizing systems are important heat-power equipment in fossil-fired power plants.

They are used to pulverize coal to fine powder and dry them so that coal powder can be sent into boiler

for burning. The flow chart of this system is shown in Fig. 3. The three inputs of this plant are the fe-

eder speed, the hot air damper and the warm air damper. The three outputs of the plant are the outlet

temperature of the mill, the inlet pressure of the mill, and differential pressure between the inlet and

outlet of the mill, which representing the mill load. Such a system is a strongly coupled, multivariable,

nonlinear process with large time delay and lots of uncertain disturbances; the conventional SISO

automatic control system without decoupling design cannot work. Under manual operation, to prevent

accidents such as mill-blockage, over-temperature, and emission of coal powder, these systems are

usually operated in uneconomical status far from optimal pulverizing efficiency so that much useful

power has been wasted. How to achieve the automatic control of ball mill pulverizing systems is always

a desiderated problem to be solved in fossil-fired power plants.

Fig. 3 The flow chart of a ball mill pulverizing system in power plants

We have established a dynamic model of a ball mill pulverizing system of a 200MW power unit

in a power plant[23,24], consisting of the following equations:

the equation of conversation of energy in the ball mill

d[(Cgqwgq + Cmwm)tm]

dt
= CgzGgztgz + Clkgzf tlk−

Ctf (Ggz + gzf )tm +
BgmCgmtc

3.6
−

BmCmtm

3.6
+ Q0 − Qc (15)

the equation of conversation of mass in the ball mill

dwm

dt
=

Bgm − Bm

3.6
(16)

the equation of inlet pressure

dPin

dt
=

RT

V1
(Gr −

√

Pin −4P + Po

R1
+ Glf + Bgm4W ) (17)

the equation of differential pressure

d4P

dt
= 3(1 + 0.8µ)

ω2
thr

2
(Gi − Go)/V (18)
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where Cgq, Cm, Cgz, Clk, Ctf , and Cgm are the specific heats of steel balls, coal powder, drier air, cold

air, ventilation and raw coal; tgz, tlk, tm, and tc are the temperatures of drier air, cold air, mill outlet

and raw coal; Ggx, gzf , Gi and Go are mass flow rates of drier air, air leak, air coming into the mill

at the mill inlet and air leaving from the mill at the mill outlet; wgq is the ball mass inside the mill;

wm is the mill load; Bm is powder yield of the mill; Bgm is the coal feeding rate; Q0 is the quantity

of heat generated from friction and knocking, and Qc is the quantity of heat consumed by evaporation

of water in raw coal; 4W is quantity of water evaporation during milling; Pin is the inlet pressure

of the mill; 4P is the differential pressure between the inlet and outlet of the mill; Po is the sum

of outlet pressure of mill exhauster and zero position pressure; R1 is the sum of resistances of coarse

powder separator, fine powder separator and powder elevation; V1 is the tube volume; R is the ideal

gas constant; T is the thermodynamic temperature of the inlet tube; V is the gas volume inside the

mill; µ is the concentration of the coal powder inside the mill; ωthr is the air speed at the mill throat.

Apparently a ball mill pulverizing system is strongly coupled, multivariable, nonlinear, and time-

variant. The control requirement of such a system is to keep the outlet temperature, the inlet pressure

and the differential pressure in certain ranges. If the outlet temperature is too high, there will be a risk

that the coal powder in the mill might be ignited. If it is too low, the drying is not sufficient and the

coal powder might cake in the bunker. The inlet pressure is related to the mill air draft and must be

controlled lower than the atmospheric pressure. Otherwise, some coal powder will be released outside

the mill causing environmental pollution and bodily injury. To enhance the powder production ability,

the differential pressure should be kept in a high level but exorbitant differential pressure might result

in mill blockage, while low differential pressure will result in low grinding efficiency.

4.2 Control system design

This proposed multivariable intelligent decoupling control system has been designed for ball mill

pulverizing systems of 200 MW units in a power plant. The control configuration is shown in Fig. 4. It is

realized on the I/A Series DCS of Foxboro. This multivariable intelligent decoupling control system has

successfully solved the problem that ball mill pulverizing systems cannot be under automatic control.

This makes the mill operation safe and reliable.

Fig. 4 The configuration of the intelligent decoupling control system for ball mill pulverizing systems

The control system is composed of the basic control level, the coordinating control level and the

management and decision level. The basic control level consists of neural decoupling compensators,
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inlet pressure controller, outlet temperature controller and warm air damper controller.

Based on the intelligent decoupling control technique, we have designed the inlet pressure con-

troller, outlet temperature controller and the neural decoupling compensators that are employed to

reach decoupling control of the inlet pressure loop and the outlet temperature loop. From the mill

operating experiences, it is known that the warm air damper can only be used to regulate the work-

ing point instead of for direct loop regulation, so the warm air damper is governed directly by the

management and decision level. Once surplus of drying ability is detected, the warm air damper will

be opened larger than before. If shortage is detected, then the warm air damper will be closed to

certain degree, even to be closed completely. In this case, the process degenerates to a system with

two inputs, i.e. the hot air damper and the feeder speed, and three outputs, i.e. the inlet pressure,

the outlet temperature and the differential pressure. The number of inputs is less than outputs, so it

is impossible to keep three outputs to three certain constants when large variations of operating con-

dition and disturbances exist. For the ball mill pulverizing systems, small variances of three outputs

within certain ranges are allowable. The coordinating control level dynamically modifies the setpoints

of the inlet pressure controller and the outlet temperature controller using production rules based on

the instruction from the decider in the management and decision level, so that the steady relationships

among the inlet pressure, the outlet temperature and the differential pressure are coordinated. It also

identifies the channel gain from the feeder speed to the outlet temperature and tuning parameters of

the outlet temperature controller to improve the dynamic loop performance.

The management and decision level identifies the variances of grinding ability and drying ability

caused by changes of grindability and moisture content of raw coal and makes the final decision of what

kind of control strategy should be used to deal with the encountered condition and gives corresponding

instructions to the coordinating control level and the basic control level. For instance, when process has

surplus drying ability and the coordinating control level has no further coordinating ability, then the

structure of loop control is changed by the management and decision level and the warm air damper

controller is put into service.

4.3 Industrial application

To compare the difference between the intelligent decoupling control strategy and conventional

PID controllers, the experiment of warm air damper disturbance is made. When the feeder speed

and hot air damper are under automatic status and the process is in steady state, open the warm air

damper larger by 10% (shift it under manual control temperately) to introduce warm air disturbance.

The experiment results of the procedures of outlet temperature and inlet pressure returning to their

own original setpoints are recorded, as shown in Fig. 5 and Fig. 6. The measurement ranges of the

four variables in Fig. 5 and Fig. 6 are: outlet temperature, 60◦C∼ 80◦C, 2◦C/grid; inlet pressure,

−1.0kPa∼0.0kPa, 0.1kPa/grid; feeder speed and hot air damper, 0 ∼ 100%, 10%/grid. The time unit

is 3 minutes/grid.

Fig. 5 Experiment result of intelligent Fig. 6 Experiment result of conventional

decoupling control PID control

It can be seen from the experiment results that the fluctuation of outlet temperature does not

exceed 2◦C and the transient process is about 6 minutes when intelligent decoupling control is employed;

while the fluctuation of outlet temperature is about 4◦C and the transient process is more than 15
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minutes when conventional PID control is employed. Apparently, the performance of the control

system has been remarkably improved through decoupling design.

Fig. 7 and Fig. 8 show the regulation when the system works in normal situation and with sur-

plus drying ability respectively. The measurement ranges of related variables in Fig. 7 and Fig. 8 are:

outlet temperature, 50◦C∼ 100◦C, 5◦C/grid; inlet pressure, −1.0kPa∼0.0kPa, 0.1kPa/grid; differen-

tial pressure, 0.0kPa∼5.0kPa, 0.5kPa/grid; input variables, 0∼100%, 10%/grid. The time unit is 5

minutes/grid. The abbreviation “sp.” denotes setpoint. From Fig. 7 it can be seen that the difference

between the outlet temperature and its setpoint is kept within less than 2.0◦C. The inlet pressure and

differential pressure are also kept near their setpoints. The warm air damper is completely kept closed,

and process is rather smooth.

Fig. 7 Mill was controlled in normal Fig. 8 Regulation strategy when the drying

situation ability became surplus

Fig. 8 shows the control strategy when the drying ability becomes surplus. The outlet temperature

and the differential pressure keep increasing. The management and decision level triggers the setpoint

optimizer in the coordinating control level so that the setpoint of outlet temperature is enhanced.

When the coordinating control level had no more coordinating adaptability, then the decider in the

management and decision level gives instructions to open the warm air damper from zero to 20%, which

results in the stoppage of outlet temperature increasing and the differential pressure returning to the

normal range again. After this regulation, the process keeps stable.

The developed control system has been under strict on site testing, including steady state testing,

variant operating condition testing, and emergency testing. The testing results show that this control

system has strong adaptability for large variation of operating conditions. It can keep the process

stable even when the character of raw coal and device changes. The control system can automatically

deal with emergency conditions such as coal-break, mill-blockage and over temperature, the operating

support system based on expert experience can give necessary operating instruction to avoid possible

false operation of human operator. The control system keeps the coal-pulverizing systems safe, stable,

reliable, and efficient. The electric power consumption for unit coal has been reduced 10.3%. Acci-

dents like coal powder emission and mill blockage are avoided and environmental pollution has been

eliminated. The economic benefits of more than 10 million RMB per year has been produced.

5 Conclusion

Combining intelligent control techniques with multivariable adaptive decoupling control algo-

rithms, this paper proposes the multivariable neural network-based decoupling control algorithm and

develops intelligent decoupling control system consisting of basic control level, coordinating control level

and management and decision level, which can be implemented in DCS. The successful application of

the control system in 200MW power units shows that the developed multivariable intelligent decoupling
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controller can effectively deal with the control problem of industrial process that has compositive com-

plexity like multivariable, strong coupling, strong nonlinearity, with time-variant parameters and large

variations of operating conditions. Its excellent control performance and possible future application

prospect are also revealed.
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