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Abstract Multirate systems are abundant in industry; for example, many soft-sensor design prob-
lems are related to modeling, parameter identification, or state estimation involving multirate sys-
tems. The study of multirate systems goes back to the early 1950’s, and has become an active
research area in systems and control. This paper briefly surveys the history of development in the
area of multirate systems, and introduces some basic concepts and latest results on multirate sys-
tems, including a polynomial transformation technique and the lifting technique as tools for handling
multirate systems, lifted state space models, parameter identification of dual-rate systems, how to
determine fast single-rate models from dual-rate models and directly from dual-rate data, and a hi-
erarchical identification method for general multirate systems. Finally, some further research topics
for multirate systems are given.
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1 Introduction

Systems with two or more operating frequencies are called multirate systems. For example,

consider a discrete-time system in which the control updating period T1 is not equal to the out-

put sampling period T2 (T1 6= T2); this gives rise to a simple multirate system—a dual-rate sys-

tem, as shown in Fig. 1. Here Pc is a continuous-time process; the control input uc(t) to Pc is pro-

duced by a zero-order hold HT1
with period T1; and the output yc(t) of Pc is sampled by a sampler

ST2
with period T2, yielding a discrete-time signal yc(kT2). The signals uc(t) and uc(kT1) satisfy:

uc(t) = uc(kT1), kT1 6 t < (k + 1)T1, k = 0, 1, 2, · · ·. Note that multirate systems normally are

time-varying even if their underlying continuous-time processes are linear time-invariant.

Fig. 1 The dual-rate sampled-data system

When T1 = T2, we obtain a conventional sample-data system—single-rate system[1], which is a

special case of multirate systems. Identification and control of single-rate systems are well studied, e.g.,

see the books entitled Process Identification[2], System Identification: Theory for the User[3], Adaptive

Filtering, Prediction and Control[4], and Adaptive Control Systems[5].

For a multi-input multi-output system, when each input/output channel has different updat-

ing/sampling period, we obtain a multirate system. Multirate systems are abundant in industrial

processes[6∼9] , mostly due to sensor and actuator speed constraints; for example, in polymer reactors[6,8] ,

fermentation processes[7] and petroleum production[9], the composition, density or molecular weight

distribution, and gasoline octane quality measurements are typically obtained after several minutes

of analysis, whereas the manipulated variables can be adjusted at relatively fast rate. Also, many

soft-sensor design problems in chemical processes are related to modeling, parameter identification, or

state estimation involving multirate systems.

The study of multirate systems goes back to the early 1950′s. The first important work was

performed by Kranc on the switch decomposition technique[10], later termed as the lifting technique,

which has become a standard tool to transform a periodically time-varying system into a time-invariant
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one. The lifting results in a multivariable system with a causality constraint even if the corresponding

continuous-time process is a scalar one. Multirate system identification requires dealing with this

causality constraint and extracting single-rate models from the estimated multirate models[11,12] .

For decades, modeling and control of multirate systems have had many successful applications

in chemical and petroleum processes[6∼9], and a series of results have been achieved in theory, in-

cluding controllability and observability[13,14], optimal control[15,16], robust control[17∼22] , adaptive

control[8,23∼26] , predictive control[14,27∼29] , inferential control[9,30,31] , signal processing[32∼36] , model-

ing and identification[11,14,37∼46] , and so on.

The objective of this paper is to establish the mapping relationship between available multirate

input and output data by using a polynomial transformation technique and the lifting technique,

namely, to derive general model descriptions for multirate systems, and to survey some identification

methods for multirate systems.

The paper is organized as follows. In Section 2, an identification model of a simple dual-rate

system is derived by using the polynomial transformation technique; the properties of the parameter

and missing output estimation in the stochastic framework are studied; a single-rate model is extracted

from the obtained dual-rate model and is identified directly from dual-rate data. In Section 3, a

lifted state-space model of a simple dual-rate system is derived by using the lifting technique; the

identifiability problem of dual-rate systems is discussed, and so is the relationship between the dual-

rate model and single-rate model. In Section 4, a lifted state-space model and a time-varying state-

space representation of general dual-rate systems are established; hierarchical identification methods

of combined state and parameter estimation based on the lifted model are introduced; and algorithms

of determining the single-rate models with different sampling periods are discussed. In Section 5, a

lifted state-space model for a general multirate system is given. Finally, some concluding remarks are

collected in Section 6.

2 Simple dual-rate systems

2.1 Dual-rate models

Fig. 2 is a simple dual-rate system, where Hh is a zero-order hol with period h, Sqh a sampler

with period qh (q > 2 being an integer). For convenience, we often omit h and write u(k) := uc(kh),

y(kq) := yc(kqh), · · ·. The dual-rate input-output data available are

• {u(k), k = 0, 1, 2, · · ·} at the fast rate, and

• {y(kq), k = 0, 1, 2, · · ·} at the slow rate.

Thus, the intersample outputs (also called missing outputs), yc(kqh+ih) =: y(kq+i), i = 1, 2, · · · , q−1,

are unavailable due to hardware limitation.

Fig. 2 A simple dual-rate system

Therefore, the objectives of modeling and identification of multirate systems are two-fold: To

establish the mapping relationship between available input and output data, and to estimate the

intersample (missing) output samples by using the obtained model. If we identify the models obtained

by the lifting technique or by the polynomial transformation technique, then it is required to find the

corresponding fast single-rate models since they can be used to design, e.g., the inferential control

scheme [9,31] and self-tuning control strategy [43,44] for multirate systems.

Let us introduce some notation first. The symbol I stands for an identity matrix of appropriate

sizes; the superscript T denotes the matrix transpose; |X| = det[X] represents the determinant of the

matrix X; the norm of a matrix X is defined by ‖X‖2 = tr[XXT]; λmax[X] and λmin[X] represent the

maximum and minimum eigenvalues of X, respectively; f(k) = o(g(k)) represents f(k)/g(k) → 0 as

t → ∞; for g(k) > 0, we write f(k) = O(g(k)) or f(k) ∼ g(k) if there exists a positive constant δm

such that |f(k)| 6 δmg(k); θ̂(∗) denotes the estimate of the parameter vector θ.

Assume that Pc is a continuous-time linear time-invariant system with the following state-space
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representation

ẋc(t) = Acxc(t) + Bcuc(t)

yc(t) = Cxc(t) + Duc(t)

where xc(t) ∈ Rn is the state vector, Ac, Bc, C and D are constant matrices of appropriate sizes.

Discretizing Pc with sampling period h yields a single-rate system P1 = ShPcHh:

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) + Du(k) (2)

where x(k) := xc(kh), matrices A, B, Ac and Bc have the following relations[1]:

A = eAch, B =

∫ h

0

eActdtBc

In general, P1 has a rational transfer function:

P1(z) = D + C(zI − A)−1B =:
b(z)

a(z)
(3)

where z−1 represents a unit backward operator at the fast rate [z−1x(k) = x(k− 1)], a(z) and b(z) are

polynomials in z−1 and

a(z) = 1 + a1z
−1 + a2z

−2 + · · · + anz−n, b(z) = b0 + b1z
−1 + b2z

−2 + · · · + bnz−n

Hence, we obtain a fictitious single-rate model:

y(k) = P1(z)u(k) =
b(z)

a(z)
u(k)

However, this model is not suitable for system identification using the dual-rate data {u(k), y(kq)}.
For example, take q = 3, it is easy to get the recursive equation:

y(k) + a1y(k − 1) + a2y(k − 2) + · · · + any(k − n) = b0u(k) + b1u(k − 1) + · · · + bnu(k − n)

When k is an integer multiple of q, y(k) is available, but y(k − 1) and y(k − 2) are not. In order to

obtain the model we can use with the dual-rate data, the polynomial transformation technique and the

lifting technique can be used to [12,37].

The polynomial transformation technique[12]. Let zi be the root of a(z), then

a(z) =
n

∏

i=1

(1 − ziz
−1)

Define

φq(z) =

n
∏

i=1

(1 + ziz
−1 + z2

i z−2 + · · · + zq−1
i z−q+1) =: 1 + f1z

−1 + f2z
−2 + · · · + fnf

z−nf

Multiplying the denominator and numerator of P1(z) by φq(z) gets a new model P2:

P2(z) =
b(z)φq(z)

a(z)φq(z)
=:

β(z)

α(zq)
, or α(zq)y(k) = β(z)u(k) (4)

where

α(zq) = a(z)φq(z) = 1 + α1z
−q + α2z

−2q + · · · + αnz−qn

β(z) = b(z)φq(z) = β0 + β1z
−1 + β2z

−2 + · · · + βqnz−qn

Of course, the two models P1 and P2 are equivalent but P2 is more complicated than P1 because of

the common factor φq(z). However, the advantage with the model P2 is that the denominator is a
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polynomial of z−q; arising from here is a recursive equation using only slowly sampled outputs. The

system identification algorithm we propose later for dual-rate systems will be based on this model

which does not involve the unavailable intersample output data. The price we paid is to estimate more

parameters in β(z) than in b(z).

2.2 Parameter and output estimation of ARX dual-rate models

Here we discuss the identification problem of the model in (4). From (4), introducing a random

noise term v(k) with zero mean, we have

α(zq)y(k) = β(z)u(k) + v(k) (5)

This is a dual-rate stochastic system described by the equation-error model or the ARX (Auto-

Regression with eXternal input)/CAR (Controlled Auto-Regression) model. Define the parameter

vector θ and information vector ϕ(k) as

θ = [α1, α2, · · · , αn, β0, β1, · · · , βqn]T ∈ RN , N =: qn + n + 1

ϕ(k) = [−y(k − q),−y(k − 2q), · · · ,−y(k − qn), u(k), u(k − 1), · · · , u(k − qn)]T

Then it is not difficult to get

y(k) = ϕT(k)θ + v(k) (6)

The parameter identification of the model in (6) is relatively simple because when k is an integer multi-

ply of q, ϕ(k) uses only available dual-rate data, i.e., the past slow rate outputs and the past and current

fast rate inputs. Thus, many conventional identification methods, e.g., stochastic gradient[5,47] least

squares[40,48,49] , and multi-innovation[50∼54] algorithms, can be applied to the model in (6). Recently,

the authors studied the parameter and intersample output estimation problems based on (6)[12,40,43] .

Replace k in (6) with kq and let θ̂(kq) be the estimate of θ at time kq. The least squares

algorithm of estimating the parameter vector θ of the dual-rate systems in (6) may be expressed as

(DR-LS algorithm for short):

θ̂(kq) = θ̂(kq − q) + P (kq)ϕ(kq)[y(kq) − ϕT(kq)θ̂(kq − q)] (7)

θ̂(kq + i) = θ̂(kq), i = 0, 1, · · · , q − 1 (8)

P−1(kq) = P−1(kq − q) + ϕ(kq)ϕT(kq), P (0) = PT(0) > 0 (9)

ϕ(kq) = [−y(kq − q), · · · ,−y(kq − qn), u(kq), · · · , u(kq − qn)]T (10)

Initially, we may take P (0) = p0I with p0 a positive number, e.g., p0 = 106, and θ̂(0) a small real

vector, e.g., θ̂(0) = 10−61N with 1N being an N-dimensional vector whose elements are 1. Notice that

the parameter estimate θ̂ is updated every q fast samples, namely, at the slow rate; so is the covariance

matrix P ; in between the slow samples, we simply hold θ̂ unchanged. Thus, every time θ̂ is updated,

we have q new input samples and one new output sample.

The goal here is, under weak conditions, to study the properties of the parameter estimation by

the DR-LS algorithm and the intersample output estimation error. By the stochastic process theory

and martingale convergence theorem (Lemma D.5.3 in [4]), we easily establish the following theorems[12]

under weaker conditions than [55, 56].

Theorem 1. For the dual-rate stochastic system in (6) and DR-LS algorithm in (7)∼(10), assume

that {v(k)} is independent white noise sequence with zero mean and bounded time-varying variance

σ2
v(k), i.e.,

(A1) E[v(k)] = 0, a.s.; E[v2(k)] = σ2
v(k) 6 σ̄2

v < ∞, a.s.

and that there exist positive constants c0, c1, c2 and k0 such that, for k > k0, the following generalized

persistent excitation condition (unbounded condition number) holds:

(C1) c1I 6 1
k

∑k
i=1 ϕ(iq)ϕT(iq) 6 c2k

c0I, a.s.

Then, for any c > 1, the parameter estimation error ‖θ̂(kq) − θ‖2 satisfies

1) ‖θ̂(kq) − θ‖2 = O

(

[lnk]c

k

)

→ 0, a.s.;

2) ‖θ̂(kq) − θ‖2 = O

(

lnk[lnlnk]c

k

)

→ 0, a.s.;
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3) ‖θ̂(kq) − θ‖2 = O

(

lnk(lnlnk)[lnlnlnk]c

k

)

→ 0, a.s.;

4) ‖θ̂(kq) − θ‖2 = O

(

lnk(lnlnk)(lnlnlnk)[lnlnlnlnk]c

k

)

→ 0, a.s.

Theorem 1 shows that for the noise sequence {v(k)} with a bounded time-varying variance, the

parameter estimates by the DR-LS algorithm converges to the true parameters at the rate of at least
√

(lnk)c/k. For an arbitrary small positive real ε, we have [lnk]β = o(kε). Hence

‖θ̂(kq) − θ‖2 = O

(

1

k1−ε

)

→ 0, a.s.

The following theorem indicates that the parameter estimation error also converges to zero for un-

bounded noise variance.

Theorem 2. For the dual-rate stochastic system in (6) and DR-LS algorithm in (7)∼(10), assume

that the noise sequence {v(k)} satisfies:

(A2) E[v(k)] = 0, a.s.; E[v2(k)] = σ2
v(k) 6 δεk

ε, a.s., 0 6 δε < ∞, 0 6 ε < 1

that is, {v(k)} is an independent random noise sequence with unbounded variance, and that there exist

positive constants c3, c4 and k0 such that, for k > k0, the following weak persistent excitation condition

(bounded condition number) holds:

(C2) c3I 6 1
k

∑k
i=1 ϕ(iq)ϕT(iq) 6 c4I, a.s.

Then lim
k→∞

‖θ̂(kq) − θ‖2 = 0, a.s.

Condition (C1) is weaker than Condition (C2), because setting c0 = 0 in Condition (C1), we

obtain Condition (C2).

Since single-rate systems belong to a special class of dual-rate systems with q = 1, the results of

Theorems 1 and 2 still hold for single-rate systems. Here, unlike in [57,58], there is no assumption that

the high-order moments of the noise {v(k)} exist, i.e., we do not assume that E[|v(k)|γ |Fk−1] < ∞, a.s.

for some γ > 2.

Based on the input data and past and current output data {y(kq), y(kq − q), · · ·}, define the

prediction of the output at time kq + q,

ŷ(kq + q) = ϕT(kq + q)θ̂(kq)

and the intersample outputs,

ŷ(kq + i) =

{

y(kq), i = 0

ϕ̂T(kq + i)θ̂(kq), i = 1, 2, · · · , q − 1
(11)

ϕ̂(kq + i) = [−ŷ(kq − q + i),−ŷ(kq − 2q + i), · · · ,−ŷ(kq − qn + i),

u(kq + i), u(kq + i − 1), · · · , u(kq + i − qn)]T

The following results on the output prediction/estimation can be established.

Theorem 3. Assume that (A1) and (C2) hold, then the output prediction (or sometimes called

output estimation) at sampling instants has the minimum variance property, i.e.,

lim
k→∞

1

k

k
∑

i=1

[ŷ(iq) − y(iq) + v(iq)]2 = 0, a.s., or lim
k→∞

1

k

k
∑

i=1

E{[ŷ(iq) − y(iq)]2} 6 σ̄2
v

Further, assume that α(z) is strictly stable, i.e., all zeros of α(z) are strictly inside the unit circle, then

the bounded input assumption implies that the output estimation error is uniformly bounded, i.e.,

lim
k→∞

1

k

k
∑

i=1

E{[ŷ(i) − y(i)]2} = O

(

(lnk)c+1

k
+ σ̄2

v

)

2.3 Determination of equivalent single-rate models

Next we give a way to determine the single-rate model P1(z) from the obtained dual-rate model

P2(z). The parameter vector θ̂(kq) is used to form the estimate of P2(z),

P̂2(z) =
β̂(kq, z)

α̂(kq, zq)
=

β̂0(kq) + β̂1(kq)z−1 + β̂2(kq)z−2 + · · · + β̂qn(kq)z−qn

1 + α̂1(kq)z−q + α̂2(kq)z−2q + · · · + α̂n(kq)z−qn
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where

[α̂1(kq), α̂2(kq), · · · , α̂n(kq), β̂0(kq), β̂1(kq), · · · , β̂qn(kq)]T = θ̂(kq)

Let the estimate of P1(z) be

P̂1(z) =
b̂(kq, z)

â(kq, z)
=

b̂0(kq) + b̂1(kq)z−1 + b̂2(kq)z−2 + · · · + b̂n(kq)z−n

1 + â1(kq)z−1 + â2(kq)z−2 + · · · + ân(kq)z−n

According to (4), applying the rational fraction approximation theory or model equivalence principle,

we have[12,59]

b̂(kq, z)

â(kq, z)
=

β̂(kq, z)

α̂(kq, zq)
, or α̂(kq, zq)b̂(kq, z) = β̂(kq, z)â(kq, z)

Expanding this into a polynomial equation and comparing the coefficients of z−i term on both sides

set up the (qn + n + 1) equations with unknowns âi(kq) and b̂i(kq); solving these equations directly

gives the estimate P̂1(z) of P1(z).

2.4 Other models

In this section, we discuss identification problems of two class of dual-rate systems, i.e., the

corresponding single-rate system is a CAR model or CARMA (Controlled Auto-Regression and Moving

Average) model.

1) The single-rate CAR case. The equation is

a(z)y(k) = b(z)u(k) + v(k) (12)

Notice that we continue using definitions of variables as before. Using the polynomial transformation

technique and multiplying both sides by φq(z) give

α(zq)y(k) = β(z)u(k) + φq(z)v(k), or α(zq)y(kq) = β(z)u(kq) + φq(z)v(kq)

This is a dual-rate system described by a CARMA model. Let

ϕ(kq) = [−y(kq − q),−y(kq − 2q), · · · ,−y(kq − qn), u(kq), u(kq − 1), · · · , u(kq − qn),

v̂(kq − 1), v̂(kq − 2), · · · , v̂(kq − nf )]T (13)

v̂(kq − i) = y(kq − i) − ϕT(kq − i)θ̂(kq), i = 1, 2, · · · , nf (14)

θ̂(kq) = [α̂1(kq), α̂2(kq), · · · , α̂n(kq), β̂0(kq), β̂1(kq), · · · , β̂qn(kq),

f̂1(kq), f̂2(kq), · · · , f̂nf
(kq)]T (15)

θ = [α1, α2, · · · , αn, β0, β1, · · · , βqn, f1, f2, · · · , fnf
]T (16)

The recursive extended least squares (RELS)[2,60,61] may be used to identify this dual-rate CARMA

model by increasing the dimensions of the parameter vector and information vector, adding the pa-

rameters fi of the noise model φq(z) to the parameter vector and adding the noise terms v(kq− i), i =

1, 2, · · · , nf to the information vector (since v(kq− i) is unknown, it is replaced by the estimation resid-

ual v̂(kq− i)). It seems that the RELS algorithm in (7)∼(9) and (13)∼(15) may compute the extended

parameter estimation vector θ̂(kq) in (16), but actually ϕ(kq− i) on the right-hand side of (14) contains

the unknown intersample outputs if i is not an integer multiple of q. Thus, it is impossible to compute

the residual by (14).

As in the preceding section, a feasible way is that after computing the parameter estimate θ̂(kq)

at each step, determine the estimate P̂1(z) = b̂(kq, z)/â(kq, z) of P1(z) = b(z)/a(z), and then with

reference to (11), the single-rate model in (12) is used to estimate the intersample outputs:

ŷ(kq + i) =

{

y(kq), i = 0

ϕ̂a(kq + i)θ̂a(kq), i = 1, 2, · · · , q − 1
(17)

ϕ̂a(kq + i) = [−ŷ(kq + i − 1),−ŷ(kq + i − 2), · · · ,−ŷ(kq + i − n),

u(kq + i), u(kq + i − 1), · · · , u(kq + i − n)]T

θ̂a(kq) = [â1(kq), â2(kq), · · · , ân(kq), b̂0(kq), b̂1(kq), · · · , b̂n(kq)]T ∈ R2n+1
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After obtaining the intersample output ŷ(k), the residual can be computed by (14).

However, how to extend the RELS convergence analysis from the single-rate case[4,60,62] to this

dual-rate case in (7)∼(9) and (13)∼(17) is still open and worth further exploration.

2) The single-rate CARMA case. The model is

a(z)y(k) = b(z)u(k) + d(z)v(k) (18)

with

d(z) = 1 + d1z
−1 + d2z

−2 + · · · + dnz−n

Adopting a similar approach as above, we multiply both sides of (18) by φq(z) to get a new model.

Comparing with the CAR case above, the difference is that it requires estimating a noise model with

more parameters:

φq(z)d(z) =: 1 + e1z
−1 + e2z

−2 + · · · + enez−ne

Similarly, after obtaining the parameter estimate at each step, determine the estimate P̂1(z) = b̂(kq, z)/

â(kq, z) of P1(z), and with reference to (11), the single-rate model in (18) is used to estimate the

intersample outputs:

ŷ(kq + i) =

{

y(kq), i = 0

ϕ̂a(kq + i)θ̂a(kq), i = 1, 2, · · · , q − 1
(19)

ϕ̂a(kq + i) = [−ŷ(kq + i − 1),−ŷ(kq + i − 2), · · · ,−ŷ(kq + i − n),

u(kq + i), u(kq + i − 1), · · · , u(kq + i − n),

v̂(kq + i − 1), v̂(kq + i − 2), · · · , v̂(kq + i − n)]T ∈ R3n+1 (20)

θ̂a(kq) = [â1(kq), â2(kq), · · · , ân(kq), b̂0(kq), b̂1(kq), · · · , b̂n(kq),

d̂1(kq), d̂2(kq), · · · , d̂n(kq)]T ∈ R3n+1

From here, we can see that the intersample output estimates rely on the noise estimates (residuals), and

the noise estimates also rely on the intersample output estimates. This is a hierarchical computation

process with interactive computation. The convergence of this approach requires further research.

Finally, how to use the polynomial transformation technique to study identification problems for

models in Table 1 based on dual-rate input/output data are also future research topics.

Table 1 Some stochastic system models[5]

Items Name Description

1 OE y(k) =
b(z)
a(z)

u(k) + v(k)

2 CARAR/ARARX a(z)y(k) = b(z)u(k) + 1
c(z)

v(k)

3 CARARMA/ARARMAX a(z)y(k) = b(z)u(k) +
d(z)
c(z)

v(k)

2.5 Direct identification of single-rate models from dual-rate data

Although the dual-rate data {u(k), y(kq)} may be used to identify a dual-rate model by the poly-

nomial transformation technique, this model has more parameters than the original system, especially

for large q; hence the corresponding algorithm requires a large amount of computation. The hierarchical

identification principle[63∼67] can be used to reduce the computation, but the best way is to identify

single-rate models directly from the dual-rate data. Fortunately, the auxiliary model identification

principle[68∼70] is suitable for solving the identification problem with unmeasurable variables, and is

here used to study identification of single-rate models for dual-rate sampled-data systems[41,42] .

The basic idea of auxiliary-model identification is to replace the unmeasurable variables of the

system with the outputs of an auxiliary model and to ensure that the model outputs approach the un-

measurable variables so that the consistent parameter estimation and unmeasurable variable estimation

are obtained[41,42,68∼70] .

Next, we discuss the identification algorithms of single-rate output-error (OE) and CAR models

by using the dual-rate data.
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2.5.1 The output error models

The output-error model in Fig. 3 can be expressed as

x(k) = P1(z)u(k) =
b(z)

a(z)
u(k), y(k) = x(k) + v(k) (21)

where x(k) is the true output (noise-free output) but unmeasurable. Our goal is, by means of an

auxiliary model, Pa(z) (see Fig. 3), to study the estimation problem of P1(z) and x(k) by using the

dual-rate data {u(k), y(kq)}. Its basic idea is to use the auxiliary model (AM) Pa(z) to predict x(k),

further use u(k) and AM output xa(k) rather than x(k) for identifying P1(z). The details are as follows.

Fig. 3 The single-rate system with an auxiliary model

Define the parameter vector θs of P1(z) and information vector ϕ0(k) as

θs = [a1, a2, · · · , an, b0, b1, · · · , bn]T ∈ R2n+1

ϕ0(k) = [−x(k − 1),−x(k − 2), · · · ,−x(k − n), u(k), u(k − 1), · · · , u(k − n)]T

From (21), we have

x(k) = ϕT
0 (k)θs, y(k) = ϕT

0 (k)θs + v(k) (22)

A difficulty arises since x(k) is unknown, the standard least squares cannot be applied to (22). In order

to recursively estimate θs, we replace x(k− i) in ϕ0(k) with the output xa(k− i) of the auxiliary model:

xa(k) = Pa(z)u(k) =
ba(z)

aa(z)
u(k), or xa(k) = ϕT

a (k)θa(k) (23)

Here, ϕa(k) and θa(k) are the information vector and parameter vector of the auxiliary model at time

k; xa(k) can be referred to as the estimate of x(k).

Therefore, the key is how to establish the auxiliary model in (23) so that the dual-rate data

{u(k), y(kq)} can be used to obtain the estimate xa(k) of x(k) and to ensure that xa(k) converges to

x(k): xa(k) → x(k); then identification of P1(z) can be solved by using xa(k) rather than x(k).

There are many ways to choose auxiliary models, e.g., using the estimate P̂1(z) of the single-rate

model[42] P1(z) and using the finite impulse response (FIR) model of the single-rate system[41].

1) Using the estimate P̂1 as the auxiliary model[42].

Replacing k in (22) with kq gives

y(kq) = x(kq) + v(kq) = ϕT
0 (kq)θs + v(kq) (24)

Let θ̂s(kq) be the estimate of θs. Using xa(kq − i) as x(kq − i) and ϕ(kq) as ϕ0(kq). we easily get the

recursive least squares algorithm of estimating θs in (24) based on the auxiliary model:

θ̂s(kq) = θ̂s(kq − q) + P (kq)ϕ(kq)[y(kq) − ϕT(kq)θ̂s(kq − q)] (25)

θ̂s(j) = θ̂s(kq), j = kq + 1, kq + 2, · · · , kq + q − 1 (26)

P−1(kq) = P−1(kq − q) + ϕ(kq)ϕT(kq) (27)

ϕ(kq) = [−xa(kq − 1), · · · ,−xa(kq − n), u(kq), u(kq − 1), · · · , u(kq − n)]T (28)

xa(kq + j) = ϕT(kq + j)θ̂s(kq), j = 0, 1, · · · , q − 1 (29)

θ̂s(kq) = [â1(kq), â2(kq), · · · , ân(kq), b̂0(kq), b̂1(kq), · · · , b̂n(kq)]T (30)
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Equations (25)∼(29) define our auxiliary model least squares (AMLS) identification algorithm for

dual-rate systems, DR-AMLS algorithm for short. Note that the algorithm is combined in the sense

that the parameters and true outputs are estimated simultaneously, and can be implemented on-line.

Here, the parameter vector and information vector of the auxiliary model are θa(kq) = θ̂s(kq) and

ϕa(kq) = ϕ(kq).

The properties of the DR-AMLS algorithm are studied in detail in [42]: under certain conditions,

we have θ̂s(k) → θs and xa(k) → x(k).

2) Using FIR as the auxiliary model[41].

Let {gi : i = 0, 1, 2, · · ·} be the impulse response parameters of P1(z). Assuming stability of P1,

we can rewrite (21) as

y(k) = (g0 + g1z
−1 + g2z

−2 + · · ·)u(k) + v(k)

Then as i → ∞, gi → 0. Hence

y(k) = G(p, z)u(k) + v(k), G(p, z) = g0 + g1z
−1 + g2z

−2 + · · · + gp−1z
−p+1 (31)

As long as p is sufficiently large, the model in (31) is as close to (21) as one desires.

Here, we use the estimate Ĝ(p, z) of the FIR model G(p, z) as the auxiliary model:

xa(k) = Pa(z)u(k) = Ĝ(p, z)u(k)

and identify the parameters ai and bi of P1(z) from u(k) and xa(k). The details are as follows.

Define the parameter vector θ and information vector ϕ(k) as

θ = [g0, g1, g2, · · · , gp−1]
T ∈ Rp

ϕ(k) = [u(k), u(k − 1), u(k − 2), · · · , u(k − p + 1)]T ∈ Rp

Hence, (31) may be rewritten as

y(k) = ϕT(k)θ + v(k), or y(kq) = ϕT(kq)θ + v(kq)

Since v(kq) is a white noise and ϕ(kq) and y(kq) both are available, the standard least squares is used

to estimate θ:

θ̂(kq) = θ̂(kq − q) + L(kq)[y(kq) − ϕT(kq)θ̂(kq − q)] (32)

θ̂(kq + j) = θ̂(kq), j = 0, 1, · · · , q − 1 (33)

L(kq) = P (kq − q)ϕ(kq)[1 + ϕT(kq)P (kq − q)ϕ(kq)]−1 (34)

P (kq) = [I − L(kq)ϕT(kq)]P (kq − q) (35)

ϕ(kq) = [u(kq), u(kq − 1), u(kq − 2), · · · , u(kq − p + 1)]T ∈ Rp (36)

θ̂(kq) = [ĝ0(kq), ĝ1(kq), ĝ2(kq), · · · , ĝp−1(kq)]T (37)

The output xa(k) is given by

xa(kq + j) = Pa(z)u(kq + j) =

p−1
∑

i=0

ĝi(kq)u(kq + j − i) = ϕT(kq + j)θ̂(kq), j = 0, 1, · · · , q − 1 (38)

In the same way, using xa(k) as the estimate of x(k), we can easily compute the parameter vector θs

in (22) of the single-rate model P1 by

θ̂s(k) = θ̂s(k − 1) + Ls(k)[xa(k) − ϕT
s (k)θ̂s(k − 1)] (39)

Ls(k) = Ps(k − 1)ϕs(k)[1 + ϕT
s (k)Ps(k − 1)ϕs(k)]−1 (40)

Ps(k) = [I − Ls(k)ϕT
s (k)]Ps(k − 1) (41)

ϕs(k) = [−xa(k − 1), · · · ,−xa(k − n), u(k), u(k − 1), · · · , u(k − n)]T (42)

θ̂s(k) = [â1(k), â2(k), · · · , ân(k), b̂0(k), b̂1(k), · · · , b̂b(k)]T (43)
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Equations (38)∼(39) and (39)∼(43) form the FIR model based RLS algorithm of identifying single-rate

models by using the dual-rate data, FIR-RLS algorithm for short.

Identification accuracy of the FIR-RLS algorithm depends on the order p in G(p, z). A correlation-

analysis based method to identify the FIR model with the order p increasing is provided in [41].

After identifying G(p, z), letting G(p, z) = b(z)/a(z), we may determine the parameters of the

single-rate model P1(z) by the model equivalence principle[12,59].

2.5.2 The equation-error models

The equation-error model is expressed as

a(z)y(k) = b(z)u(k) + v(k)

Here, we still use the auxiliary model identification methods above to estimate the parameters of

this system. The convergence problems are still open. Of course, we may also study identification

approaches and their properties of CARAR and CARARMA models in Table 1 based on the dual-rate

data.

3 The lifting technique and multirate systems

The standard technique in handling multirate systems[9,11,31,45] is called blocking in signal pro-

cessing and lifting in control. For a periodically time-varying multirate system, its lifted version is

necessarily multivariable, even if the corresponding continuous-time system is a single-input and single-

output time-invariant process. The lifting technique transforms a periodically time-varying system into

a time-invariant one. In this section, we simply introduce the lifting technique and discuss mathematical

models and identifiability of dual-rate systems.

3.1 The lifting technique

Let u(k) be a discrete-time signal defined on the time set {0, 1, 2, · · ·}:

u = {u(0), u(1), u(2), · · · , u(k), · · ·}

For an integer q > 1, define the q-fold lifting operator, Lq , by the map from u(k) to u(k) defined as

u =



































u(0)

u(1)
...

u(q − 1)













,













u(q)

u(q + 1)
...

u(2q − 1)













, · · · ,













u(kq)

u(kq + 1)
...

u(kq + q − 1)













, · · ·























We write u = Lqu. Note that the lifting operation results in no loss of information; the dimension of

the lifted signal u(k) is q times that of u(k). If the underlying period for u(k) is h, then the underlying

period for the lifted signal u(k) is qh. It is easy to see that the inverse operator, L−1
q , mapping u(k)

back to u(k), is well-defined.

3.2 Lifting a simple dual-rate system

For the dual-rate system in Fig. 2, one can get q inputs and one output in one output (large)

sampling interval T2 = qh. For convenience, we put the q inputs together to form a lifted input vector

u, and the resulting lifted system has q inputs. Assuming that {u(k), y(kq)} is available, and adopting

the lifting technique and the zero-order hold property, uc(t) = uc(kh) =: u(k), t ∈ [kh, (k + 1)h), it is

not difficult to get the lifted state-space model[1,12]:

Pq :

{

x((k + 1)q) = Aqx(kq) + [Aq−1B, Aq−2B, · · · , B]u(kq)

y(kq) = Cx(kq) + [D, 0, 0, · · · , 0]u(kq)
(44)

where

u(kq) =











u(kq)

u(kq + 1)
...

u(kq + q − 1)











is the lifted input vector. The resulting system is multi-input, and Pq maps between available input

and output data.
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For a given single-rate model P1 in (1)∼(2), one can find its lifted model Pq according to (44).

On the other hand, given Pq , whether does there exist a unique P1 and how is P1 computed? These

are discussed below.

The lifted system in (44) has q-input and Pq has q subsystems:

Pq = [Pq1, Pq2, · · · , Pqq ]

From (44), subsystems Pq1, Pq2, · · · , Pqq have the following transfer functions,

Pq1(z) = C(zI − Aq)−1Aq−1B + D, Pqi(z) = C(zI − Aq)−1Aq−iB, i = 2, 3, · · · , q (45)

Form a new transfer function

P1,q(z) = Pq1(z
q) + zPq2(z

q) + z2Pq3(z
q) + · · · + zq−1Pqq(z

q) (46)

We can show P1,q(z) = P1(z). In fact, from (45) and (46), we have

P1,q(z) = C(zqI − Aq)−1(Aq−1 + zAq−2 + · · · + zq−2A + zq−1I)B + D (47)

Since

zqI − Aq = (Aq−1 + zAq−2 + · · · + zq−2A + zq−1I)(zI − A)

Pre-multiplying (zqI − Aq)−1 and post-multiplying (zI − A)−1 give

(zI − A)−1 = (zqI − Aq)−1(Aq−1 + zAq−2 + · · · + zq−2A + zqI)

Substituting the last equation into (47) directly leads to P1,q(z) = C(zI − A)−1B + D = P1(z), which

is obtained by canceling common factors of the numerator and denominator of P1,q(z)[9,12]. This

procedure is theoretically sound, but in practice, if there exist model errors in Pq(z), the required

common factor cancelation could be hard to achieve.

3.3 Identifiability of transfer functions for dual-rate systems

Identifiability depends on controllability and observability. Therefore, it is important if the lifted

system in (44) is controllable and observable. Under what conditions this is true? To answer this

question, we assume that the state-space realization in (1)∼(2) of P1(z) is minimal, i.e., (A, B) is

controllable and (C, A) is observable. Note that this is guaranteed as long as the continuous-time process

(Ac, Bc) is controllable and (C, Ac) is observable and if the sampling period h is non-pathological[1].

Controllability of Pq can be achieved under a mild condition[1,11,71] . About the observability of Pq, we

have the following lemma.

Lemma 1. If for every eigenvalue λ of A, none of the q − 1 points λej2πi/q (j =
√
−1, i =

1, 2, · · · , q−1) is an eigenvalue of A, observability of (C, A) implies that of (C, Aq). (In turn observability

of P1 implies observability of Pq.)

Lemma 1 (and Lemma 2 in the sequel) can be proved according to the way provided in [11,39,71];

and the proof is omitted here.

For identifiability of the transfer function model P2(z) in (4), assume that P1(z) is properly frac-

tional, i.e., a(z) and b(z) have no non-trivial common factor. Although the order qn of P2(z) becomes

greater than the order n of P1(z) due to the polynomial transformation, P2(z) is still identifiable because

the number of outputs in the information vector does not increase, and the number of inputs increases.

This does not affect identifiability since we assume that the input signal is persistently excited.

4 General dual-rate systems

4.1 State-space models of dual-rate systems

For the dual-rate system in Fig. 1, without loss of generality, we assume that T1 = ph and T2 = qh,

p and q are two coprime integers, for otherwise, we can absorb any common factor of p and q into h; h

is a positive real number called the base period. For example, if T1 = 3.09 s, T2 = 4.12 s, then p = 3,

q = 4, and h = 1.03 s.

References [11,45] and [72] exploit different approaches to derive the lifted state-space models for

such a general dual-rate system in Fig. 1.

For the dual-rate system in Fig. 1 with T1 = ph and T2 = qh, let T := pqh be the frame period

(the smallest common multiply of T1 and T2) and σ := T/h = pq. The coprimeness of p and q implies
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that for every i, 0 6 i 6 p − 1, there exist integers ci > 0 and 0 6 di < p such that iq = cip + di.

Assume that [A, B,C, D] are the system matrices of P1 obtained by discretizing Pc with period h – see

(1)∼(2). Due to adopting the zero-order hold, uc(t) = uc(kT1) = uc(kph) =: u(kp), t ∈ [kph, (k+1)ph),

yc(t)|t=kT2
= yc(kT2) =: y(kq). Define

F (i, p) := Ai + Ai+1 + · · · + Ai+p−1, p > 0, i > 0

AjF (i, p) = F (i + j, p), j > 0

Ap := exp(AcT1) = Ap; Aq := exp(AcT2) = Aq

Bp :=

∫ T1=ph

0

eActdt Bc = (Ap−1 + Ap−2 + · · · + A + I)B = F (0, p)B

u(kσ) := uc(kT ) = Lqu(kσ) =











u(kσ)

u(kσ + p)
...

u(kσ + (q − 1)p)











(lifted input)

y(kσ) := y
c
(kT ) = Lpy(kσ) =











y(kσ)

y(kσ + q)
...

y(kσ + (p − 1)q)











(lifted output)

AT := exp(AcT ) = Apq = Aq
p = Ap

q ∈ Rn×n

BT := [Aq−1
p Bp, Aq−2

p Bp, · · · , ApBp, Bp]

= [A(q−1)pF (0, p)B, A(q−2)pF (0, p)B, · · · , ApF (0, p)B, F (0, p)B]

= [F (pq − p, p)B, F (pq − 2p, p)B, · · · , F (p, p)B, F (0, p)B]

CT :=















C

CAq

CA2
q

...

CA
(p−1)
q















; DT :=



















D 0 · · · · · · · · · · · · · · · 0

D10 D11 · · · D1c1 0
...

D20 D21 · · · · · · D2c2 0
...

...
. . .

. . .
...

Dp−1,0 Dp−1,1 · · · · · · · · · · · · Dp−1,cp−1
0



















Dij := CF (iq − jp − p, p)B, Dici := CF (0, di)B + D

Theorem 4. The lifted state-space model mapping u to y is given by

PT :

{

x((k + 1)σ) = AT x(kσ) + BT u(kσ)

y(kσ) = CT x(kσ) + DT u(kσ)

where x(kσ) := xc(kT ).

The controllability and observability of such a model is discussed below.

Lemma 2. 1) If for every eigenvalue λ of Ap, none of the q − 1 points λej2πi/q (j =
√
−1, i =

1, 2, · · · , q − 1) is an eigenvalue of Ap, controllability of (Ap, Bp) implies that of each (Aq
p, A

i
pBp) (i =

0, 1, · · · , q − 1), which in turn implies controllability of the model PT . 2) If for every eigenvalue λ of

A, none of the pq − 1 points λej2πi/(pq) (i = 1, 2, · · · , pq − 1)) is an eigenvalue of A, controllability of

(A, B) implies that of each (Aq
p, AiB) (i = 0, 1, · · · , pq − 1), which in turn implies controllability of the

model PT ; observability of (C, A) implies that of each (CAi, Aq
p), which in turn implies observability

of the model PT .

4.2 Identification of the lifted systems

Here, we discuss how to identify the parameters and/or states of the lifted system PT by using

the lifted input-output data {u(kσ), y(kσ)}.
Note that DT is a (block) lower triangular matrix; this structure gives rise to the so-call causality

constraint. Since PT is derived from the causal continuous-time process, the causality constraint is

automatically satisfied. However, we need to deal with the causality constraint in identification of

lifted systems.
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For the case with unmeasurable states, we used the hierarchical identification principle[63∼67] to

jointly estimate states and parameters of the lifted systems based on the Kalman filtering[45,46] and on

the observability canonical form[72].

Also, taking the z-transform of PT , we obtain the transfer matrix:

PT (z) = CT (zI − AT )−1BT + DT =:
Q(z)

p(z)
∈ R(pm)×(qr)

where r and m are the numbers of input and output of the original system, respectively, and p(z)

is the characteristic polynomial. Assume that {u(kp), y(kq) : k = 0, 1, 2, · · ·} are available; so is

{u(kσ), y(kσ)}. Hierarchical identification methods in [64,65] can be applied to estimate the parameters

of PT (z).

4.3 Computation of system matrices

For dual-rate systems, an interesting question is how to find single-rate system matrices [Ap, Bp, C,

D], [Aq, Bq, C, D] and [A, B, C, D] with sampling periods T1 = ph, T2 = qh and h, respectively, as-

suming that [AT , BT , CT , DT ] are available. Two ways are given in [11,39] to compute [Ap, Bp, C, D]:

the controllability and observability approach, and the characteristic roots approach based on the

assumption that AT is diagonalizable.

The algorithms to compute system matrices with different periods are given in [45] which can

reduce numerical computation errors. An approach was discussed in [73] to compute the continuous-

time models from the obtained discrete-time ones.

4.4 Time-varying state-space representations

For dual-rate systems with T1 = ph and T2 = qh, if the frame period is very large, the lifted

systems may have a singularity problem: The matrix AT may be close to zero (assuming system

stability), and hence lifted models may lose dynamical properties. For instance, for the scalar system,

ẋ(t) = ax(t) + u(t), a = −0.125

Assume that T1 = 7s, T2 = 17s, h = 1s, we can compute A = exp(ah) = 0.882497, Ap = exp(aT1) =

0.416862, Aq = exp(aT2) = 0.119433, but AT = exp(aT ) = 0.000000346633. Here, AT = Apq is very

small. In order to avoid this singularity problem, we present a time-varying state-space representation

as follows:

PV :

[

xc(kT + (i + 1)T2)

yc(kT + iT2)

]

=

[

Aq Bi
1 Bi

2 · · · Bi
δi

0 · · · 0

C D 0 · · · · · · · · · · · · 0

] [

xc(kT + iT2)

uc(kT )

]

Here i = 1, 2, · · · , p − 1, δi = ci+1 − ci + 1, δ = max[δi : i = 1, 2, · · · , p − 1], and

Bi
j = F (q − di − jp, p)B, j = 1, 2, · · · , δi − 1

Bi
δi

= F (0, di+1)B

Bi
j = 0, j > δi + 1

uc(kT ) = Lδuc(kT ) =











uc(kT )

uc(kT + T1)
...

uc(kT + (δ − 1)T1)











=











u(kpq)

u(kpq + p)
...

u(kpq + (δ − 1)p)











This is a periodically time-varying system described by multi-models (p models): For each fixed i, PV

is linear time-invariant. Many methods can be applied to identify PV , e.g., the combined state and

parameter identification approach[5,74].
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5 Multirate multivariable systems

A multirate multivariable system is shown

in Fig. 4, where Pc is a continuous-time process,

uc(t) = [uc1(t), uc2(t),· · · ,ucr(t)]
T ∈ Rr the input

vector, yc(t) =[yc1(t),yc2(t),· · · ,ycm(t)]T ∈ Rm

the output vector. Suppose the updating period

in the jth input channel is pjh, and the sampling

period in the ith output channel is qih; Hpjh is a
Fig. 4 The multirate multivariable system

zero-order hold with period pjh: ucj(t) = ucj(kpjh) =: uj(kpj), t ∈ [kpjh, (k+1)pjh); Sqih is a sampler

with period qih: ycj(kqih) =: yj(kqi). This way we can define the multi-rate hold and sampling blocks

as follows:

H =







Hp1h

. . .

Hprh






, S =







Sq1h

. . .

Sqmh







u(k∗) =











u1(kp1)

u2(kp2)
...

ur(kpr)











∈ Rr, y(k∗) =











y1(kq1)

y2(kq2)
...

ym(kqm)











∈ Rm

Assume that Pc takes the following form:







ẋc(t) = Acxc(t) + Bcuc(t) = Acx(t) +
r

∑

j=1

Bcj ucj(t)

yc(t) = Cxc(t) + Duc(t)

where xc(t) ∈ Rn denotes the state vector, Ac ∈ Rn×n, Bc := [Bc1, Bc2, · · · , Bcr] ∈ Rn×r,

C =











C1

C2

...

Cm











∈ Rm×n, Ci ∈ R1×n, D =











d11 d12 · · · d1r

d21 d22 · · · d2r

...
...

...

dm1 dm2 · · · dmr











∈ Rm×r

Theorem 5. For the multirate multivariable system in Fig. 4, let σ be the least common multiple

of (pj , qi), denoted by

σ := LCM[p1, p2, · · · , pr, q1, q2, · · · , qm]

T := σh (the frame period), µi := σ/qi, i = 1, 2, · · · , m; νj := σ/pj , j = 1, 2, · · · , r. For each i

(i = 1, 2 · · · , µI − 1), there exist integers cIJ
i > 0 and 0 6 dIJ

i < pJ such that iqI = cIJ
i pJ + dIJ

i ,

I = 1, 2, · · · , m, J = 1, 2, · · · , r. The lifted multirate multivariable systems can be expressed as

PM :



















xc((k + 1)T )

y
c1

(kT )

y
c2

(kT )
...

y
cm

(kT )



















=



















Aσ Ω1 Ω2 · · · Ωr

Γ1 H11 H12 · · · H1r

Γ2 H12 H22 · · · H2r

...
...

...
...

Γm Hm1 Hm2 · · · Hmr





































xc(kT )

uc1(kT )

uc2(kT )
...

ucr(kT )



















or equivalently as
[

x((k + 1)σ)

y(kσ)

]

=

[

Aσ Ω

Γ H

] [

x(kσ)

u(kσ)

]

where

A = exp(Ach) ∈ Rn×n, Bj =

∫ h

0

exp(Act)dtBcj ∈ Rn×1
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Bpj =

∫ pjh

0

exp(Act)dtBcj = F (0, pj)Bj ∈ Rn×1, Apj = Apj , Aqi = Aqi

Ω = [Ω1, Ω2, · · · , Ωr] ∈ Rn×(ν1+ν2+···+νr)

Ωj = [A
νj−1
pj

Bpj , A
νj−2
pj

Bpj , · · · , Bpj ] =

[F (σ − pj , pj)Bj , F (σ − 2pj , pj)Bj , · · · , F (0, pj)Bj ] ∈ Rn×νj

Γ =











Γ1

Γ2

...

Γm











∈ R(µ1+µ2+···+µm)×n, Γi =











Ci

CiAqi

...

CiA
(µi−1)
qi











∈ Rµi×n

H =











H11 H12 · · · H1r

H12 H22 · · · H2r

...
...

...

Hm1 Hm2 · · · Hmr











∈ R(µ1+µ2+···+µm)×(ν1+ν2+···+νr)

Hij =

























dij 0 · · · · · · · · · · · · · · · 0

hij
10 hij

11 · · · hij

1c
ij
1

0
...

hij
20 hij

21 · · · · · · hij

2c
ij
2

0
...

...
...

. . .
. . .

...

hij
(µi−1),0 hij

(µi−1),0 · · · · · · · · · · · · hij

(µi−1),c
ij
µi−1

0

























∈ Rµi×νj

hil = CIF (iqI − lpJ − pJ , pJ )BJ , l = 1, 2, · · · , cIJ
i − 1, hIJ

ici
= CIF (0, dIJ

i )BJ + dIJ

uj(kσ) = ucj(kT ) =











uj(kσ)

uj(kσ + pj)
...

uj(kσ + (νj − 1)pj)











, u(kσ) =











u1(kσ)

u2(kσ)
...

ur(kσ)











y
i
(kσ) = y

ci
(kT ) =











yi(kσ)

yi(kσ + qi)
...

yi(kσ + (µi − 1)qi)











, y(kσ) =











y
1
(kσ)

y
2
(kσ)

...

y
m

(kσ)











In order to save space, the proof is omitted here but available from the authors. A similar result can

be obtained from Lemma 7 in [18].

In principle, existing identification methods of multi-input multi-output systems can be applied

to the lifted multirate systems PM based on the multirate data {uj(kpj), yi(kqi) : j = 1, 2, · · · , r; i =

1, 2, · · · , m; k = 0, 1, 2, · · ·}, but dealing with causality constraints is necessary. In general, the lifted

systems have very high input-output dimensions; so developing identification algorithms with less

computational effort is still an important research problem.

6 Conclusions

Mathematical models for dual-rate/multirate systems are derived by using a polynomial trans-

formation technique and the lifting technique. Several parameter and intersample output estimation

algorithms are studied, and ways to determine single-rate models from lifted dual-rate models are dis-

cussed. The auxiliary model methods of identifying single-rate models are introduced directly from

dual-rate sampled data; also discussed are the hierarchical schemes of combined state and parameter

estimation for lifted systems. These are fundamental for multirate system modeling and identification.

There are many topics requiring further research, for example, how to derive mathematical models

for dual-rate/multirate systems by using the polynomial transformation technique, the relationship

between the polynomial transformation and lifting techniques, existence and uniqueness of single-rate

models with different sampling periods and how to determine these single-rate models. Because lifted
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multirate multivariable systems have high dimensions, how to develop fast identification algorithms is

yet unsolved.
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