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Abstract The development of control techniques to mitigate the effects of unknown hysteresis

preceding with plants has recently re-attracted significant attention. In this paper, we first give a

brief review of presently developed hysteresis models and hysteresis compensating control methods.

Then, with the use of the Prandtl-Ishlinskii hysteresis model, we propose a robust adaptive control

scheme. The novelty is that the model of hysteresis nonlinearities is firstly fused with the available

control techniques without necessarily constructing a hysteresis inverse. The global stability of the

adaptive system and tracking a desired trajectory to a certain precision are achieved. Simulations

performed on a nonlinear system illustrate and clarify the approach.
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1 Introduction

Hysteresis usually refers to a nonlinear relation between two time-dependent variables that is

multi-valued, and often takes the form of non-smooth loops, as shown in Fig. 1. It occurs in a wide

range of physical systems. In particular, smart material-based actuators which have been found a

variety of applications such as in high-precision positioning devices exhibit hysteresis phenomena[1,2].

It was shown that errors caused by thehysteresis effects can lead to undesirable inaccuracies or oscillations

Fig. 1 Hysteresis curves

and even instability[3,4]. The development of control

techniques to mitigate the effects of unknown hys-

teresis has been studied for decades and has recently

re-attracted significant attention. Much of this re-

newed interest is a direct consequence of the impor-

tance of hysteresis in current applications. Interest

in studying dynamic systems with actuator hystere-

sis is also motivated by the fact that they are nonlin-

ear systems with non-smooth nonlinearities for which

traditional control methods are insufficient[5]. It is

typically challenging in developing new approaches

to control a system in the presence of unknown hys-

teresis nonlinearities.

To address such a challenge, it is necessary to develop suitable mathematical models that are

sufficiently accurate, amenable to controller design for nonlinearity compensation and efficient enough

to use in real-time applications. In this paper, we first give a brief review of hysteresis models and

presently developed hysteresis compensating control methods. Then, by using Prandtl-Ishlinskii model,

we propose an integrated robust adaptive control scheme to fuse the model of hysteresis with the avail-

able control techniques without necessarily constructing a hysteresis inverse. The global stability of

the adaptive system and tracking a desired trajectory to a certain precision are achieved. Simula-

tions performed on a nonlinear system illustrate and further validate the effectiveness of the proposed

approach.
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2 Literature review

2.1 Models of hysteresis

To develop general models that can represent diverse hysteresis behaviors has been a subject of

interest since the end of the 19th century. Several physics-based hysteresis models, which built on the

first principles of physics, have been proposed and each has been found applications in certain areas.

Since the early 1970’s, from purely phenomenological viewpoint, systematic mathematical investiga-

tions into the hysteresis as a general nonlinear behavior have been carried out. The basic idea is to

model the real complex hysteresis nonlinearity by the weighted aggregate effect of all possible so-called

elementary hysteresis operators, which are non-complex hysteresis with a simple mathematical struc-

ture. Phenomenological models, such as Preisach models and Prandtl-Ishlinskii models, are used to

produce behaviors similar to those physical systems without necessarily providing physical insight of

the problems. In the following development, we give a brief overview of currently popular hysteresis

models. The reader may also refer to [6,7] for recent review. The detailed discussion on this subject

can be found in the monographs[8∼11].

The Duhem Models. The Duhem model focuses on the fact that the output can only change its

character when the input changes direction. In general, for suitable functions f1 and f2, the hysteresis

is given by two families of curves in the (v, w) plane defined as the solution to the differential equation

ẇ(t) = f1(w, v)v̇+(t) + f2(w, v)v̇−(t)

with v̇+(t) = max[0, v̇(t)], v̇−(t) = min[0, v̇(t)]. Coleman and Hodgdon[12,13] extensively studied this

model, using the equation
dB

dt
= α|

dH

dt
|[f(H) −B] +

dH

dt
g(H) (1)

where α > 0 is a constant, H is the applied magnetic field and B is the level of magnetization of

the medium. They proved that the following conditions for f and g are necessary and sufficient for

Equation (1) to give a hysteresis diagram,

1) f(·) is piecewise smooth, monotone increasing, odd, with limH→∞ f ′(H) finite;

2) g(·) is piecewise continuous, even, with limH→∞ g(H) = limH→∞ f ′(H);

3) f ′(H) > g(H) > αeαH
∫ ∞

H
|f ′(η) − g(η)|e−αηdη for all H > 0.

And the solution can be explicitly expressed as

B = f(H) + [B0 − f(H0)]e
−α(H−H0)sgnḢ + e−αHsgnḢ

∫ H

H0

[g(η) − f ′(η)]e−αηsgnḢdη (2)

for H piecewise monotone and Ḣ constant. They showed that functions and parameters in (1) can be

fine-tuned to match experimental results for rate-independent hysteresis in ferromagnetic soft materials.

A modification based on exchanging the positions of B and H in the differential Equation (1) was also

studied by Hodgdon[14,15].

The Bouc-Wen model. Suppose that x is the position of a oscillator system given by

ẍ = f(x, ẋ, z, u) (3)

where z is the hysteretic variable proportional to the restoring force acting on the oscillator described

by the first order differential equation

ż = Aẋ− βẋ|z|n − γ|ẋ||z|n−1z (4)

the parameters n,A, β, and γ are shape parameters of the hysteresis curves which can also be functions

of time. Note that in this model ẋ acts as an input, and the equation is not involved in x although

the hysteresis phenomenon is observed between x and z. When n = 1, (4) becomes a linear ordinary

differential equation which can be solved according to the signs of ẋ and z. As n increases to ∞,

the hysteresis loop will converge to a bilinear curve defined by ż = ẋ[sgn(z + A) − sgn(z − A)]/2.

The model has been applied to describe hysteresis in a single degree of freedom oscillator[16] and a

magnetorheological damper attached to a scaled three-degree of freedom building[7].
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The Jiles-Atherton model. This model is widely used in modelling ferromagnetic hystere-

sis[17∼19] . In its original form[18], magnetization M = Mrev +Mirr was decomposed into its reversible

component Mrev and irreversible component Mirr. The differential equations with respect to the

frequency of the imposed magnetic field H(t) are represented as

dMirr

dH
=

Man −Mirr

δk − α(Man −Mirr)
(5)

dMrev

dH
= c(

dMan

dH
−

dMirr

dH
) (6)

where Man is the anhysteretic magnetization

Man = Ms

{

coth

(

H + αM

a

)

−

(

a

H + αM

)}

(7)

δ is a directional parameter. It takes the value +1 for dH/dt > 0 and −1 for dH/dt < 0. a, α, c, k, and

the saturation magnetization Ms are the parameters to be determined from experimental measurements

of the hysteresis loops, see [18,20,21]. The Jiles-Atherton model and the Preisach model are two models

often used in magneto-dynamic field. Philips[22] compared the computation results from both models

with experimental measurements. It was found that the identification of the parameters in the Jiles-

Atherton model requires less measurements, while the Preisach model fits the hysteresis loops better.

The Preisach model. The most popular hysteresis model is certainly the Preisach model. It

was initially proposed by Weiss and de Freundenreichin in 1916[23] . In 1935, Preisach suggested the

geometrical interpretation, which is one of the main features of the model[24]. The success of the model,

however, has to be ascribed to Krasnosel’skii and other Russian mathematicians having elucidated the

phenomenological character of the Preisach’ model. They showed that this algorithm can be considered

as a superposition of elementary hysteretic “relay” operators

W (t) =

∫ +∞

0

∫ +∞

−∞

µ(α, β)γα,β[v](t)dαdβ (8)

where γα,β[v](t) is a relay hysteresis defined as

γα,β[v](t) =











+1, if v(t) > α

−1, if v(t) < β

remains unchanged, if β < v(t) < α

(9)

An extensive review on the Preisach model, its modified forms, and model identification methods can

be found in monographs[8,10] and papers[25,26]. There are many experimental setups to show that this

model can describe the hysteresis behavior in smart material-based actuators and sensors, such as

magnetostrictive[27], piezoceramic in a stacked form[28], and shape memory alloys[29] actuators.

The Prandtl-Ishlinskii model. There are other types of hysteresis operators such as “play”

and “stop” operators. The models set up by composition of play or stop operators are referred to

as Prandtl-Ishlinskii models. Suppose Er[v] are basic elastic-plastic elements or stop operators for all

r ∈ [0, R], then the model can be expressed as

w(t) =

∫ R

0

p(r)Er[v](t)dr (10)

where p(r) is a given density function. Although the model itself was introduced much earlier[30,31] ,

the reader may refer to [8,9,32] for recent development. In our research the Prandtl-Ishlinskii model is

applied to define the hysteresis nonlinearity presented as an input of the plant. The detailed discussion

about this model will be given in section 4.

The Krasnosel’skii-Pokrovskii hysteron. In 1970’s, Krasnosel’skii and Pokrovskii systemat-

ically investigated the hysteresis phenomenon from mathematical view of point. They geometrically

defined the basic model of hysteresis, referred as hysteron, see the monograph[9]. The definition is
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general and can cover various forms of hysteresis loops. A simple example is a play operator. Banks,

Kurdila and Webb[33,34] developed a model by use of generalized play operators, called Krasnosel’skii-

Pokrovskii (KP) operators. The model represents hysteresis as the cumulative effect of weighted KP

operators distributed over a domain in R2. Galinaitis investigated the KP model focusing on the

properties of inverse and approximation[35].

2.2 Control methods

Having given a brief review of presently developed hysteresis models, we now turn our attention

to the control techniques when a hysteresis is preceding with plants. In the literature, the most

common approach to mitigate the effects of hysteresis is to construct an inverse operator, which was

pioneered by Tao and Kokotovic[4]. For hysteresis with major and minor loops, they used a simplified

linear parameterized model to develop an adaptive hysteresis inverse model with parameters updated

on line by adaptive laws. Following this concept, many research papers have been proposed for the

compensation of the hysteresis with different hysteresis models. The main issue is how to find the

inverse of the hysteresis.

The control architectures based on Preisach model has been studied by many researchers. Ge

and Jouaneh[36] proposed a static approach to reduce the hysteresis effects in the problem of tracking

control of a piezoceramic actuator for desired sinusoidal trajectory. The relationship between the input

and the output of actuator was first initialized by a liner approximation model of a specific hysteresis.

The Preisach model of the hysteresis was then used to redefine the corresponding input signals for

the desired output of the actuator displacements. PID feedback controller was used to adjust the

tracking errors. Galinaitis[35] analytically investigated the inverse properties of the Preisach model and

proved that a Preisach operator can only be locally invertible. He gave a closed form inverse formula

when the weight function of Preisach model was taking a specific form. Mittal and Meng[37] developed

a method of hysteresis compensation in electromagnetic actuator through inversion of numerically

expressed Preisach model in terms of the first-order reversal curves and the input history. Instead of

modelling the forward hysteresis and then finding the inverse, Croft et al. and Bernard[2,38] directly

formulated the inverse hysteresis effect using Preisach model.

Control designs based on the inverse of KP model can be found in [35,39]. Webb defined a

parameterized discrete inverse KP model, combined with adaptive laws to adjust the parameters on-

line to compensate hysteresis effects[39]. Galinaitis mathematically investigated the properties and the

discrete approximation method of the KP operators[35] . Recently, a feed-forward control design based

on the inverse of Prandtl-Ishlinskii model was also applied to reduce hysteresis effects in piezoelectric

actuators[32].

In addition to the above mentioned model-based inverse methods, neural networks and fuzzy logic

models were also developed. It is well known that the universal approximation property is one of the

most important properties of neural networks and fuzzy systems. However, this property is generally

proven for continuous and one-to-one functions. Wei and Sun[57] studied the rate-independent memory

property. After analysis multi-layer feed-forward , recurrent and reinforcement learning networks, they

found that networks with only computational nodes and links cannot function as hysteresis simulators.

They proposed a propulsive neural unit to construct hysteretic memory. Several propulsive neural units

with distinct sensible ranges were used to form a model. It can be trained to follow the loops given by

the Preisach model. Selmic[40] gave a neural network structure to approximate piecewise continuous

functions appearing in friction, or functions with jumps. Hwang[41,42] developed a neuro-adaptive

control method for unknown piezoelectric actuator systems. The proposed neural network included

two different nonlinear gains according to change rate of input signal and a linear dynamic system to

learn the dynamics of the piezoelectric actuators. A forward control based on the inverse of learned

model was used to achieve an acceptable tracking result. Because the tracking performance by a control

could not be guaranteed as the system was subject to uncertainties, a discrete-time variable-structure

control was synthesized to improve the performance. Readers can also refer to [43,44].

Essentially, the inversion methods usually treat hysteresis and structure response function sepa-

rately, that is, use the inverse model in the forward loop to cancel hysteresis behavior, and then design
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a feedback controller to compensate the structural dynamic effects. However, it is difficult to decou-

ple the effects from the hysteresis and the structural dynamics from experimental measurements. It

would be better to develop an approach that can consider both effects simultaneously[45]. Due to the

multi-valued and non-smoothness feature of hysteresis, methods using inverse models are complicated,

computationally costly and possess the strong sensitivity of the model parameters to unknown mea-

surement errors. These issues are directly linked to the difficulty of stability analysis of the systems

except for certain special cases[4].

Passivity-based stability and control of hysteresis in smart actuators were attempted by Pare and

Gorbet[29,46]. In [29] energy properties of the Preisach hysteresis model were investigated, and passivity

was demonstrated for the relationship between the input and the derivative of the output. The result

only leads to stability of rate control of hysteresis systems.

The differential models of hysteresis were used for control purposes[7,47∼49]. The Bouc-Wen model

was applied to develop a semi-active structural control model for a magnetorheological damper attached

to a three-story scaled building, see [48]. Su et al. used Duhem model investigated by Coleman and

Hodgdon[49]. He combined the solution properties of the model with adaptive control techniques and

developed a robust adaptive control algorithm. This method integrated the hysteresis compensation

with control techniques without constructing an inverse of hysteresis. The dynamic characteristic of

this type of models can be implemented in state-space. The main challenge is resulted from the high

nonlinearity and lack of knowledge about mathematical properties of the differential models when they

are applied to system control.

From the above overview, it is clear that the most common approach is to construct an inverse

operator. The discussions on the fusion of the available hysteresis models with the available control

techniques is still spare in the literature. With all the developed hysteresis models, it is by nature to

seek the way to fuse those hysteresis models with available robust control techniques to mitigate the

effects of hysteresis. Therefore, the challenge addressed here is to fuse the available hysteresis models

with available control techniques to have the basic requirement of stability of the system without

constructing inverse hysteresis nonlinearity.

As an illustration, in this paper we show such a possibility by fusing the Prandtl-Ishlinskii models

with the adaptive robust control approach to mitigate the effects of the hysteresis. The proposed

control law ensures the global stability of the adaptive system and achieves both stabilization and

strict tracking precision. Simulations performed on a nonlinear system illustrate and further validate

the effectiveness of the proposed approach. The proposed method can be observed as an initial step to

to fuse the available hysteresis models with available control techniques.

3 Problem statement

Consider a controlled system consists of a nonlinear plant preceded by an actuator with hysteresis

nonlinearity, that is, the hysteresis is presented as an input of the nonlinear plant. A hysteresis denoted

as an operator

w(t) = P [v](t) (11)

with v(t) as input and w(t) as output. The operator P [v] will be discussed in detail in the forthcoming

section. The nonlinear dynamic system being preceded by the above hysteresis is described in the

canonical form,

x(n)(t) +
k

∑

i=1

aiYi(x(t), ẋ(t), . . . , x
(n−1)(t)) = bw(t) (12)

where Yi are known continuous, linear or nonlinear functions. Parameters ai and control gain b are

constants. It is a common assumption that the sign of b is known. Without losing generality, we assume

b > 0. It should be noted that more general classes of nonlinear systems can be transformed into this

structure[50]. The control objective is to design a control law for v(t) in (11), to force the plant state

vector, x = [x, ẋ, . . . , x(n−1)]T, to follow a specified desired trajectory, xd = [xd, ẋd, . . . , x
(n−1)
d ]T, i.e.,

x → xd as t→ ∞.
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4 Prandtl-Ishlinskii hysteresis models

4.1 Stop and play operators

We list below some basic hysteresis operators. A detailed discussion on this subject can be found

in the monographs[8,9,11] . The first operator to be introduced is the stop operator, w(t) = Er[v](t),

with threshold r.

Analytically, suppose Cm[0, tE] is the space of piece-wise monotone continues functions, for any

input v(t) ∈ Cm[0, tE ], let

er(v) = min(r,max(−r, v)) (13)

Then, for any initial value w−1 ∈ R (the initial state before v(0) is applied at time t = 0)[8] and r > 0,

the stop operator Er can be given by the inductive definition

Er[v;w−1](0) = er(v(0) −w−1)

Er[v;w−1](t) = er(v(t) − v(ti) + Er[v;w−1](ti)), for ti < t 6 ti+1 and 0 6 i 6 N − 1
(14)

where 0 = t0 < t1 < · · · < tN = tE is a partition of [0, tE] such that the function v is monotone on each

of the sub-intervals [ti, ti+1]. The argument of the operator is written in square brackets to indicate

the functional dependence, since it maps a function to a function. The stop operator however is mainly

characterized by its threshold parameter r which determines the hight of the hysteresis region in the

(v, w) plane.

There is another basic hysteresis nonlinearity operator, play. For a given input v(t) ∈ Cm[0, tE ],

the play operator Fr, with threshold r ≥ 0 and the initial value w−1 ∈ R, is defined by

Fr[v;w−1](0) = fr(v(0), w−1)

Fr[v;w−1](t) = fr(v(t), Fr[v;w−1](ti)), for ti < t 6 ti+1 and 0 6 i 6 N − 1
(15)

with

fr(v, w) = max(v − r,min(v + r, w)) (16)

where the partition 0 = t0 < t1 < · · · < tN = tE is the same as defined for the stop operator. From the

definitions given in (14) and (15), it has been proved[9] that the operator Fr is the complement of Er,

i.e., they are closely related through the equation

Er + Fr = Id (17)

for any piece-wise monotone input function v and r > 0, where Id is an identity mapping.

In the sequel, we will simply write Er[v] or Fr[v] to denote Er[v;w−1] or Fr[v;w−1] so long as

doing so does not affect the proof. Due to the nature of the play and stop operators, above discussions

are defined on the space Cm[0, tE ] of continuous and piecewise monotone functions; however, they can

also be extended to the space C[0, tE ] of continuous functions.

4.2 Prandtl-ishlinskii model

The Prandtl-Ishlinskii model was introduced to formulate the elastic-plastic behavior through a

weighted superposition of basic elastic-plastic elements Er[v], or stop as following

w(t) =

∫ R

0

p(r)Er[v](t)dr (18)

where p(r) is a given density function, satisfying p(r) > 0 with
∫ ∞

0
rp(r)dr <∞, which is supposed to

be identified from experimental data. With thus defined density function, this operator maps C[t0,∞)

into C[t0,∞),i.e., Lipschitz continuous inputs will yield Lipschitz continuous outputs[9]. Since the

density function p(r) vanishes for large value of r, in the literature the choice of R = ∞ as upper

limit of integration is just a matter of convenience[8]. As an illustration, Fig. 1 shows w(t) generated

by model (18), with p(r) = e−0.067(r−1)2 , r ∈ [0, 10], and input v(t) = 7 sin(3t)/(1 + t), t ∈ [0, 2π]

with ψ = 0. Since the operator Fr is the complement of Er, the Prandtl-Ishlinskii model can also

be expressed through play operator. Using Equation (17) and substituting Er in (18) by Fr, the

Prandtl-Ishlinskii model defined by the play hysteresis operator is expressed as

w(t) = p0v(t) −

∫ R

0

p(r)Fr[v](t)dr (19)
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where p0 =
∫ R

0
p(r)dr is a constant, depending on the density function. Noticing that Equation (19)

decomposes the hysteresis behavior into two terms. The first term describes the linear reversible part

and the second term gives the hysteresis. This decomposition is crucial for design of the controller,

because the currently available robust adaptive control techniques can be utilized for the controller

design.

5 Controller design

In this section, we propose an adaptive controller for plants in the form of (12), preceded by

the hysteresis described by the Prandtl-Ishlinskii model. The proposed controller will lead to global

stability and yields tracking to within a desired precision. Rewrite (19) as following

w(t) = p0v(t) − d[v](t) (20)

where

d[v](t) =

∫ R

0

p(r)Fr[v](t)dr (21)

with p0 =
∫ R

0
p(r)dr. If the hysteresis in the system is known, that is, p(r) and the hysteresis internal

state (refer to [8]) are given or can be accurately estimated, for any continuous input function v(t) at

a time instant t, Fr[v](t) is a fixed set of line segments decided by some extreme values of v(t). The

integration of d[v] can be calculated online, we use d[v] as a feed forward compensator to cancel the

second non-linear partition. However, in most cases, it is difficult or impossible to accurately decide

the hysteresis in the system. In this paper we attempt to develop a direct control method by using

currently available robust adaptive control techniques.

Substitute the hysteresis model of (20) into (12), we have

x(n)(t) +
k

∑

i=1

aiYi(x(t), ẋ(t), . . . , x
(n−1)(t)) = b{p0v(t) − d[v](t)} (22)

which results in a linear relation to the input signal v(t) plus a shifting term bd[v]. In the robust control

contents, bd[v](t) is normally treated as a disturbance function, which is assumed to be bounded or

bounded by a known function. Here, since bd[v](t) is bounded by the control signal v to be decided[8]

we cannot make an assumption on its boundedness.

Define the tracking error vector x̃ = x − xd, and a filtered tracking error as

s(t) = (
d

dt
+ λ)(n−1)x̃(t), λ > 0 (23)

s(t) can be rewritten as s(t) = ΛT
x̃(t) with ΛT = [λ(n−1), (n − 1)λ(n−2), . . . , 1]. Rather than driving

the adaptive law with the filtered error s(t), we introduce a tuning error, sε, as follows:

sε = s− εsat(
s

ε
) (24)

where ε is an arbitrary positive constant and sat(·) is the saturation function. The tuning error, sε,

disappears when s is less than ε. For the development of a robust adaptive control law, the following

assumptions regarding the plant and the hysteresis are made.

Assumption 1. The desired trajectory xd = [xd, ẋd, . . . , x
(n−1)
d ]T is continuous and available.

Furthermore [xT
d , x

(n)
d ]T ∈ Ωd ⊂ Rn+1 with Ωd a compact set.

Assumption 2. There exist known constants 0 < bmin 6 bmax such that the control gain b in

(12) satisfies b ∈ [bmin, bmax].

Assumption 3. Define θ
∆
= [ a1

bp0
, . . . , ar

bp0
]T ∈ Rk, then

θ ∈ Ωθ
∆
= {θ : θi min 6 θi 6 θi max,∀i ∈ {1, . . . , k}}

where θi min and θi max are some known real numbers.
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Assumption 4. There exist known constants p0min and pmax, such that p0 > p0min, and p(r) 6

pmax for all r ∈ [0, R].

Remark. Assumption 1 is generally adopted for the design of tracking controller. Assumption

2 is common for the nonlinear controller designs. Basically, Assumption 3 implies that the ranges of

the plant parameters, ai, i = 1...k, are known in advance. This is a reasonable assumption on the prior

knowledge of the system. As for Assumption 4, since p(r) is the density function, it is reasonable to

set an upper bound pmax for p(r). Here p0 min > 0 must be satisfied.

In presenting the developed robust adaptive control law, the following definitions are required:

θ̃(t) = θ̂(t) − θ (25)

φ̃(t) = φ̂(t) − φ, φ
∆
= (bp0)

−1 (26)

p̃(t, r) = p̂(t, r) − p(r), for all r ∈ [0, R] (27)

where θ̂, φ̂ and p̂(t, r) are the estimates of θ, φ, and p(r). Let

B(v(t))
∆
=

∫ R

0

p(r)

p0min
|Fr[v](t)|dr (28)

and the estimation B̂(t) is given by
∫ R

0

p̂(t, r)
p0 min

|Fr[v](t)|dr, which leads to

B̃(t) =

∫ R

0

(p̂(t, r) − p(r))

p0 min
|Fr[v](t)|dr (29)

Given the plant and hysteresis model subject to the assumptions described above, and noticing that

the term d[v](t) in (20) is in the form of integration with the kernel Fr[v](t), we propose the following

control law:

v(t) = −kds(t) + φ̂ufd(t) + Y T(x)θ̂ + uN(t) (30)

with

ufd(t) = x
(n)
d (t) − ΛT

v x̃(t) (31)

uN(t) = −sat(
s

ε
)B̂(t) (32)

where kd > 0; Y
∆
= [Y1, . . . , Yk]T ∈ Rk; ΛT

v = [0, λ(n−1), (n − 1)λ(n−2), . . . , (n− 1)λ]. The parameters

φ̂, θ̂, and function B̂(t) are updated by the following adaptation laws

˙̂
θ = Proj(θ̂,−γY (x)sε) (33)

˙̂
φ = Proj(φ̂,−ηufdsε) (34)

∂

∂t
p̂(t, r) = Proj(p̂(t, r), q

|Fr[v](t)|

p0 min
|sε|), for r ∈ [0, R] (35)

where parameters γ, η and q are positive constants determining the rates of the adaptations, and

Proj(·, ·) is a projection operator formulated as follows:

{Proj(θ̂,−γY sε)}i =































0, if θ̂i = θi max and γ(Y sε)i < 0

−γ(Y sε)i, if [θi min < θ̂i < θi max],

or [θ̂i = θi max and γ(Y sε)i > 0],

or [θ̂i = θi min and γ(Y sε)i 6 0]

0, if θ̂i = θi min and γ(Y sε)i > 0

(36)

Proj(φ̂,−ηufdsε) =































0, if φ̂ = φmax and ηufdsε < 0

−ηufdsε, if [φmin < φ̂ < φmax],

or [φ̂ = φmax and ηufdsε > 0],

or [φ̂ = φmin and ηufdsε 6 0]

0, if φ̂ = φmin and ηufdsε > 0

(37)
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Proj(p̂(t, r), q
|Fr[v](t)|

p0min
|sε|) =

{

0, if p̂(t, r) = pmax

q |Fr[v](t)|
p0 min

|sε|, if 0 6 p̂(t, r) < pmax

(38)

The stability of the closed-loop system described in (22), (30) and (33)∼(35) is established in the

following theorem.

Theorem: For the plant in Equation (12) with the hysteresis (19) at the input subject to As-

sumptions 1)∼4), the robust adaptive controller specified by Equations (30) and (33)∼(35) ensures

that: if

θ̂(t0) ∈ Ωθ = {θ : θi min 6 θi 6 θi max,∀i ∈ {1, . . . , k}}

φ̂(t0) ∈ Ωφ = {φ = (bp0)
−1 : (bmaxp0max)

−1
6 φ 6 (bminp0 min)

−1}

p̂(t0, r) ∈ Ωp = {p̂(t, r) : 0 6 p̂(t, r) 6 pmax}, ∀r ∈ [0, R] (39)

then all the closed-loop signals are bounded and the state vector x(t) converges to Ωε = {x(t)||x̃i| 6

2i−1λi−nε, i = 1, . . . , n}, ∀t > t0.

Proof: Using the expression (22), the time derivative of the filtered error (23) can be written as:

ṡ(t) = −ufd(t) −
k

∑

i=1

aiYi(x(t)) + b{p0v(t) − d[v](t)} (40)

Using the control law (30)∼(32), the above equation can be rewritten as

ṡ(t) = −ufd(t) −

k
∑

i=1

aiYi(x(t)) − bd[v](t) + bp0[−kds(t) + φ̂ufd(t) + Y T(x)θ̂ + uN (t)] (41)

To establish global boundedness, we define the following Lyapunov function candidate

V (t) =
1

2
[

1

bp0
s2ε +

1

γ
(θ̂ − θ)T(θ̂ − θ) +

1

η
(φ̂− φ)2 +

1

q

∫ R

0

p̃2(t, r)dr] (42)

Since the discontinuity at |s| = ε is of the first kind and since sε = 0 when |s| 6 ε, the derivative V̇

exists for all s, with

V̇ (t) = 0, for |s| 6 ε (43)

When |s| > ε, using (41) and the fact of sεṡε = sεṡ, we have

V̇ (t) = − kdsεs+ sε[φ̂ufd(t) + Y T(x)θ̂ + uN (t) −
1

p
d[v](t)] + sε[−φufd(t) − Y Tθ]+

1

γ
(θ̂ − θ)T

˙̂
θ +

1

η
(φ̂− φ)

˙̂
φ+

1

q

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (44)

The above equation can be simplified, by the choice of sε, to

V̇ (t) 6 − kds
2
ε + sε[φ̂ufd(t) + Y T(x)θ̂ + uN (t)] + sε[−φufd(t) − Y Tθ −

1

p0
d[v](t)]+

1

γ
(θ̂ − θ)T

˙̂
θ +

1

η
(φ̂− φ)

˙̂
φ+

1

q

∫ R

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (45)

By using the adaptive laws given in (33)∼(35) and the properties 1
γ (θ̂ − θ)TProj(θ̂,−γY sε) 6 −(θ̂ −

θ)TY sε, and 1
η (φ̂− φ)Proj(φ̂,−ηufdsε) 6 −(φ̂− φ)ufdsε, we obtain

V̇ (t) 6 −kds
2
ε + uN (t)sε −

1

p0
d[v](t)sε +

1

q

∫ R

0

p̃(t, r)Proj(p̂(t, r), q
|Fr[v](t)|

p0 min
|sε|)dr (46)

Now, we show that V̇ (t) 6 −kds
2
ε . Since

−
1

p0
d[v](t)sε + uN (t)sε 6 +

|sε|

p0

∫ R

0

p(r)|Fr[v](t)|dr −
|sε|

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr 6
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−
|sε|

p0 min

∫ R

0

p̃(t, r)|Fr[v](t)|dr (47)

from (38) we have p̃(t, r) > 0, if r is in a subset Rmax ⊂ [0, R], Rmax = {r : p̂(t, r) = pmax}, and

according to adaptation law (35)

−
|sε|

p0min

∫

Rmax

p̃(t, r)|Fr[v](t)|dr +
1

q

∫

Rmax

p̃(t, r)Proj(p̂(t, r), q
|Fr[v](t)sε|

p0min
)dr 6 0

otherwise, we have 0 6 p̂(t, r) < pmax for r ∈ Rc
max ( Rc

max is Rmax complement in [0, R]), by (38),

−
|sε|

p0 min

∫

Rc

max

p̃(t, r)|Fr[v](t)|dr +
1

q

∫

Rc

max

p̃(t, r)q
|Fr[v](t)|

p0 min
|sε|dr = 0

That is

V̇ (t) 6 − kds
2
ε + uN (t)sε −

1

p0
d[v](t)sε +

1

q

∫ R

0

p̃(t, r)Proj(p̂(t, r), q
|Fr[v](t)|

p0 min
|sε|)dr 6

− kds
2
ε −

|sε|

p0 min

∫ R

0

p̃(t, r)|Fr[v](t)|dr +
1

q

∫ R

0

p̃(t, r)Proj(p̂(t, r), q
|Fr[v](t)|

p0 min
|sε|) dr 6

− kds
2
ε (48)

Equations (42), (43) and (48) imply that V is a Lyapunov function leading to global boundedness

of variables sε, (θ̂ − θ), (φ̂ − φ), and p̂(t, r) − p(r). From the definition of sε, s(t) is bounded. It can

be shown that if x̃(0) is bounded, then x̃(t) is also bounded for all t ∈ [0, tE ]. Since xd(t) is bounded

by design, x(t) must also be bounded. To complete the proof and establish an asymptotic convergence

of the tracking error, it is necessary to show that sε → 0 as t → ∞. This is accomplished by applying

Barbalat’s Lemma (popov) to the continuous, non-negative function:

V1(t) = V (t) −

∫ t

0

(V̇ (τ ) + kds
2
ε(τ ))dτ with

V̇1(t) = −kds
2
ε(t) (49)

It can easily be shown that (40) is bounded. We should mention that {p0v(t)− d[v](t)} is the Prandtl-

Ishlinskii model defined by the play operator, which is equivalent to (18). It can be proved that

|{p0v(t) − d[v](t)}| 6 K, with K =
∫ R

0
p(r)rdr < ∞. Hence ṡ and ṡε are bounded. This implies that

V̇1(t) is a uniformly continuous function of time. Since V1 is bounded below by 0, and V̇1(t) 6 0 for all

t, use of Barbalat’s lemma proves that V̇1(t) → 0. Therefore, from (49) it can be shown that sε(t) → 0

as t→ ∞. The remark following Equation (23) indicates that x̃(t) will converge to Ωε.

6 Simulation studies

In this section, we illustrate the methodology presented in the previous sections using a simple

nonlinear system described by

ẋ = a
1 − e−x(t)

1 + e−x(t)
+ bw(t) (50)

where w(t) represents the output of the hysteresis. The actual parameter values are b = 1 and a = 1.

Without control, i.e., v(t) = 0, so w(t) = 0, using basic analysis method, it can be proved that the

system is unstable as t → ∞. The objective is to control the system state x to follow the desired

trajectory xd = 5 sin(2t) + cos(3.2t). The hysteresis is given by (19) with p(r) = αe−β(r−σ)2 for

r ∈ [0, 100], parameters α = 0.5, β = 0.0014, and σ = 1.

In the simulation, the robust adaptive control law (33)∼(35) were used, taking kd = 0.4368 and

p0 min = 4.91. In the adaptation laws, we choose γ = 0.23, η = 0.15, q = 0.0098, and the initial

parameters θ̂(0) = 1/4.41, φ̂(0) = 1/2.32, and p̂(0, r) = max{0.3 − 0.0075r, 0}. The initial state is

chosen as x(0) = 2.05, sample time is 0.001, and ε = 0.025. We also assume that the hysteresis initial

state was w−1 = 0.07 for r ∈ [0, R] before v(0) was applied and v(0) = 5.9. For the calculation of B̂(t),

we replace the integration by the sum
∑N

0 . In the simulation, we choose N = 4000.
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To illustrate the effectiveness of the proposed control scheme, the simulation has also been con-

ducted without controlling the effects of hysteresis, which is implemented by setting uN (t) = 0 in the

controller v(t). This implies that the control compensation for the hysteresis nonlinearity is ignored.

Fig. 2 shows the state trajectories and tracking errors for the desired trajectory, where the solid lines

are the results with uN (t) 6= 0 and the dotted lines are with uN(t) = 0 . This example illustrates that

the proposed robust controller clearly demonstrates excellent tracking performance and the developed

control algorithm can overcome the effects of the hysteresis.

Fig. 2 Left: Desired trajectory xd(t) = 5 sin(2t) + cos(3.2t), system outputs x(t) with control term uN (-.) and

uN = 0 (dotted line). Right: Tracking errors of the state with control term uN and uN = 0 (dotted line)

7 Conclusion

In practical control systems, hysteresis nonlinearity with unknown parameters in physical compo-

nents may severely limit the performance of control. By using the Prandtl-Ishlinskii model with play

operator, a robust adaptive control scheme without constructing a hysteresis inverse is developed for a

class of continuous-time nonlinear dynamic systems preceded by a hysteresis nonlinearity. The control

law ensures global stability of the entire system and achieves both stabilization and tracking within a

desired precision. Simulations performed on an unstable nonlinear system illustrate and further val-

idate the effectiveness of the proposed approach. The primary purpose of exploring new avenues to

fuse the model of hysteresis nonlinearities with the available adaptive controller design methodology is

achieved with highly promising results.
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