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Abstract We present a nonlinear flow control scheme based on a buffer management model with
physical constraints. It extends previous result of Pitsillides et al. in [6] by improving the queue
length regulation for better service of network traffics. Besides a single node system, we also address
the decentralized control of many cascaded nodes. The proposed discontinuous controller asymptot-
ically regulates the buffer queue length at the output port of a router/switch to a constant reference
value, under unknown time varying interfering traffics and saturation constraints on control input
and states. Its continuous approximation achieves practical regulation with an ultimate bound on
the regulation error tunable by a design parameter.
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1 Introduction

The large deployment of communication networks has resulted in many interesting challenges such

as service differentiation, QoS, and how to counteract network congestion, etc. To address these chal-

lenges, many practising engineers and researchers resort to heuristic and emulation/experiment based

approaches. Although solutions have been obtained based on engineering intuition, these approaches

involve trials and errors and are not reliable. On the other hand, model based approaches have also

been largely explored to address networking problems. For example, linear and nonlinear analysis and

control design tools prove effective in ABR traffic control of ATM network[1], congestion control in

TCP/IP network[2∼4], network performance analysis with time delay[5], and many other issues and

references cited in recent literature.

Focusing on the application of nonlinear control theory to solve networking problems, we discuss

some results that are closely related to the topic of our paper. In [5] the authors proposed a nonlinear

congestion control scheme. The design objective is to regulate the buffer queue length to a constant

reference value. Using feedback linearization and robust adaptive control ideas, the authors achieved

bounded regulation in the face of unknown time varying interfering traffics.

Our work is in part inspired by the above discussion with particular interest to improve the

regulation under disturbances and capacity constraints. Except for considering a single network node2)

as in [6], we also consider the controller design for several cascaded nodes.

The physical constraints are important issues in many control systems. Numerous results have

been established on the stabilization of linear systems with control input saturation constraint[7], while

less work is known for general nonlinear systems. We address the constraints on the control input and

the state variables. One contribution of our paper is that we give quantitative bounds for choosing

controller parameters such that the physical constraints of limited capacity and buffer size are satisfied

(using “low gain” feedback). We also specify the explicit conditions (not available in present literature)

under which asymptotic regulation can be achieved using saturated control law. The conditions are of

two aspects:

1) An upper bound satisfied by the disturbance traffics.

2) A “PE” condition that relates to a physical feature of the network traffics.

We develop a sliding mode type controller design scheme to achieve asymptotic queue length

regulation under certain assumptions. To eliminate possible undesirable behaviors such as “chattering”

due to the controller discontinuity, a continuous approximation of the discontinuous controller is given
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along with stability analysis. Practical regulation is achieved with the continuous controller and the

ultimate bound on the queue length is determined by a design parameter.

The rest of the paper is organized as follows: in Section 2, we introduce a differential equation

model that follows from previous work on this subject. Our control objectives are given with practical

limitation in mind. The controller design for scalar systems is addressed in Section 3. The control law

is further extended to a network with many cascaded nodes in Section 4. Our conclusion is summarized

in Section 5 with possible future extensions mentioned.

2 Problem formulation and design objectives

In this work, we discuss the queue length regulation problem at the output port of a network

node. We will simply use the term “queue length” when referring to that of the output port buffer.

The following model is first introduced in [8]. The authors of [6, 9, 10] continue to consider this model

for the purpose of network performance evaluation and control under non-stationary conditions. The

model uses the conservation law to establish the buffer queue length dynamic equation, as follows:

ẋ(t) = −
x(t)

1 + x(t)
· C + λ(t) (1)

x(t) ∈ [0, xbuffer] (2)

C(t) ∈ [0, Cserver] (3)

In the above equation, queue size x is taken as the state variable. The assigned capacity C is taken

as the control input. These variables are subject to physical constraints (2)∼(3) with xbuffer denoting

size of the buffer and Cserver the maximum available capacity. λ represents the average incoming traffic

rate, which is a disturbance input (Here, no regularity assumption is made on λ.). By conservation law,

the first term in the above equation represents the average outgoing traffic rate. Based on the physics

of node’s service process[8,9], some basic principles when choosing a function µ(x) for representing the

outgoing rate of a network node are:

1) µ(0) = 0; µ(x) → C when x → ∞;

2) µ(x) is a non-negative, strictly concave and increasing function on [0,∞).

The particular choice µ(x) = x
1 + xC meets the above requirements, as shown in Fig. 1. The

model is proposed for the type of traffics whose arrival and service processes satisfy standard M/M/1

queueing system assumptions, as an approximation of the general network traffics[11]. The validity of

using µ(x) = x
1 + xC to represent the average departure rate of such traffics has been verified by Filipiak

through simulation in [11]. As a result, the operating condition of the above differential equation

matches the steady state of an M/M/1 queue. The model does not depend on a particular environment

such as TCP/IP or ATM network since no other conditions are assumed about the characteristics of

the incoming traffic. Fig. 2 shows the structure of a single node (scalar) system.

Fig. 1 µ(x) vs. x

Fig. 2 Single node system

With practical considerations, we assume 0 6 λ(t) 6 b, b > 0. xref is introduced as the given

reference queue length. It should be chosen such that the switch/router is sufficiently utilized while

preserving certain capability to accommodate instantaneous traffic bursts. In practice, an empty or

extremely small steady state queue usually leads to link under utilization and is thus undesirable. In
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this work we suppose the reference value xref satisfies:

ε 6 xref 6 xbuffer

The lower bound ε > 0 may be an arbitrary positive value. Mathematically speaking, our control

law is still valid even when xref → 0. The assumption xref > ε is due to physical considerations.

x̄ := x − xref is introduced to represent the regulation error between the actual queue size and the

reference value.

The general objective of controlling network traffics is to suppress congestion and to meet certain

performance criteria, including bounded delay, sufficient bandwidth utilization and fairness among

traffics, etc. As introduced in [6], these requirements are related to the proper choice of reference value

xref , which is a separate design issue from our work. The design objective of our paper, as well as

that of [6] is to accomplish the regulation task when xref is given. Namely, we want to achieve that

x̄ → 0 (x → xref ) for all x(t0) ∈ [0, xbuffer], under the constraint 0 6 C 6 Cserver, while unknown

but bounded time varying disturbance λ(t) is present.

When the queue length of a node is below its reference (namely, xi(t) < xref
i ), we consider the node

as being under utilized, thus it is unnecessary to assign additional capacity. Based on such consideration,

we focus our design mainly on the situation when the node is sufficiently utilized (congested), namely

when x(t) > xref .

3 Controller design for scalar systems

In this section, we use the following control law to achieve the design objective. The same type

of controller will be applied to a network composed of many cascaded nodes in the next section. We

choose appropriate controller parameters in different cases.

C(x) =







0, x < xref

Cserver · sat

{

C̃d(x)
Cserver

}

, x > xref

(4)

where

C̃d(x) =
1 + x

x
(αx̄ + βsgn(x̄)) (5)

where “sat” is the commonly used saturation function defined as sat(y) = min{|y|, 1}sgn(y) and “sgn”

is the standard signum function.

The reason for using the above controller will be clear from the analysis and synthesis shown

below. α, β are design parameters to be determined. The subscript “d” indicates that this control law

is “discontinuous”. In the rest of this section, we assume:

Assumption 1. xref <
∫

∞

t0
λ(t)dt 6 ∞ when x(t0) < xref . For all t > t0, 0 6 λ(t) 6 b. b > 0 is

a constant.

Remark 1. xref <
∫

∞

t0
λ(t)dt 6 ∞ is a “PE”(persistent excitation) requirement. It assumes

that there are enough incoming traffics in the long run, such that if x(t0) < xref , queue length will

accumulate until x reaches the reference value.

We complete the controller design as follows. We first propose a “low gain” design. Under certain

conditions, the control input is kept from saturation for all initial states. As suggested in [6], since

the controller does not deplete the available capacity under this design, the “leftover” capacity can be

used to serve instantaneous traffics. To achieve better closed loop system performance such as faster

convergence and stronger disturbance rejection, we then propose an improved design using “high gain”

ideas. Note that this “high gain” design is not included in our previous work[12].

3.1 “Low gain” feedback without sat

Theorem 1. Consider the system defined in (1)∼(3). Suppose λ(t) satisfies Assumption 1 where

b <
Cserver

[

(xbuffer − xref )(xbuffer + 1)

x2
ref + xref

+ 1

]

1
xbuffer

+ 1

(6)
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For all initial queue length x(t0) ∈ [0, xbuffer] at t = t0 > 0, x is asymptotically regulated to the

reference value xref using the control law (4)∼(5), if

b

x2
ref + xref

6 α <
Cserver · xbuffer

(1 + xbufer)(xbuffer − xref )
−

b

xbuffer − xref

(7)

b < β 6 min

{

α(x2
ref + xref ),

Cserver · xbuffer

1 + xbuffer

− α(xbuffer − xref )

}

(8)

Proof. We first show that the parameter ranges (7)∼(8) are valid under the given conditions,

followed by showing that such parameter choices guarantee that the control input does not saturate

for all initial states. We then analyze the convergence performance of the queue length for the closed

loop system.

From (6), we can verify that there exists α satisfying (7). It follows that

min

{

α(x2
ref + xref ),

Cserver · xbuffer

1 + xbuffer

− α(xbuffer − xref )

}

> b

Thus the choices of α and β are valid. From (6) and (8)

dC̃d

dx
=α − (β − αxref ) ·

1

x2
= α −

β

x2
+

α · xref

x2
>

α +
α · xref

x2
−

α(x2
ref + xref )

x2
= α(1 −

x2
ref

x2
) > 0, when x > xref

Thus C̃d(x) is a monotonically increasing function of x on (xref , xbuffer]. The maximum value of C̃ is

obtained by equating x to xbuffer. C̃d|x=xbuffer
= Cmax where Cmax is as follows:

Cmax :=
1 + xbuffer

xbuffer

[

α(xbuffer − xref ) + β
]

(9)

From (5),(9) and (8)

C̃d(x) 6 Cmax =
1 + xbuffer

xbuffer

[

α(xbuffer − xref ) + β
]

6 Cserver

for all x ∈ [xref , xbuffer]. Thus C(x) is unsaturated. We then analyze the regulation performance of

our control law.

a) When x(t0) > xref

By observing (4)∼(5), we have C(x) = C̃d(x) = 0 at x = xref . This implies that x(t) > xref for

all t > t0 by observation of (1). Consider function V (x) = 1
2 x̄2. We calculate the derivative of V along

the trajectory of the controlled system using ˙̄x = ẋ, plant dynamics (1) and control law (4)∼(5).

V̇ (t, x) 6 −α|x̄|2 − (β − b)|x̄| 6 0 (10)

Thus x(t) meets the requirement (2) if x(t0) ∈ [xref , xbuffer]. Denote by W (x̄(t)) := α|x̄|2 +(β− b)|x̄|,

using Barbălat’s Lemma [10], it can be shown that W (x̄(t)) → 0, thus |x̄(t)| → 0 as t → ∞. (10)

ensures that once the trajectory happens to be at the {x = xref}, it will be confined at x̄ = 0 for all

future time.

b) When x(t0) < xref

x̄(t0) < 0, C(t) = 0 as long as x(t) < xref . The dynamic equation is simply ẋ = λ(t). Thus

x(t) = x(t0) +

∫ t

t0

λ(τ )dτ

Under the “PE” condition for the incoming traffics, namely
∫

∞

t0
λ(t)dt > xref , there exists ∞ > t1 > t0

such that x(t1) > xref for any x(t0) < xref . Thus x(t) > xref for ∀t > t1. All the analysis for the case

when x(t0) > xref can be extended to the case when x(t0) < xref .

Combining a) and b), we know that the controller achieves asymptotic regulation of x̄ to 0, namely

x converges to xref . �
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The above design uses “low gain” feedback control. Under the conditions stated in Theorem 1, the

control input does not saturate for all initial states on [0, xbuffer]. The unused capacity (Cserver−C(x))

can be used to serve instantaneous traffics[6].

A shortcoming of the “low gain” controller is that the available control capacity is not sufficiently

utilized and the closed loop system performance (such as convergence rate, disturbance rejection capa-

bility) is compromised. We propose another control strategy which improves the utilization of control

capacity and achieves better disturbance rejection for the closed loop system.

3.2 “High gain” feedback with sat

Theorem 2. Consider the network model defined in (1)∼(3). Suppose λ(t) satisfies Assumption

1 where 0 < b 6
xref

1 + xref
Cserver. For all initial queue length x(t0) ∈ [0, xbuffer] at t = t0 > 0, x is

regulated to the reference value xref asymptotically by the control law (4)∼(5) where α > 0 and β > b.

If in addition b <
xref

1 + xref
Cserver and β is chosen such that b 6 β <

xref

1 + xref
Cserver, the control law

is unsaturated when x is close to xref .

Proof. Before analyzing the regulation of the closed loop system under disturbances, we first

introduce a technical lemma to specify the property of the control law (4)∼(5) under saturation con-

straint.

Due to space limitation, an outline of proof of the lemma is given.

Lemma 1. Define function g ≡ g(x,α, β, xref , Cserver):

g = αx2 + (α + β − αxref − Cserver)x + β − αxref (11)

For any given xref , Cserver and α > 0, if

0 < β 6
xref

1 + xref

Cserver (12)

r1 and r2, the solutions of equation g = 0, satisfy

r1 6 xref 6 r2 (13)

Furthermore,

1) If xbuffer > r2, when x ∈ [xref , r2], the control input C(x), defined in (4), does not saturate;

when x ∈ (r2, xbuffer], C(x) is saturated (namely C(x) = Cserver);

2) If xbuffer 6 r2, for all x ∈ [xref , xbuffer], the control input C(x) does not saturate.

Proof of Lemma 1. Apply the parameter choice (12) to equation g = 0, we can easily verify

that the solutions of the equation are real and satisfy (13). The following two plots in Fig. 3 illustrate

the relation of function g(x) and x under the condition xbuffer > r2 or xbuffer 6 r2. According to

Fig. 3, we have

1) If xbuffer > r2, when x ∈ [xref , r2], g(x) 6 0; when x ∈ (r2, xbuffer], g(x) > 0 (see the first

plot of Fig. 3).

2) If xbuffer 6 r2, for ∀x ∈ [xref , xbuffer], g(x) 6 0 (see the second plot of Fig. 3).

r1 6 xref 6 r2 < xbuffer r1 6 xref 6 xbuffer 6 r2

Fig. 3 g vs. x
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Using the definition of g(x) in (11) and the above observations, we can arrive at the conclusions

of Lemma 1, by means of the definition of C(x) in (4)∼(5). �

We then introduce the function V (x̄(t)) = 1
2 x̄(t)2, and utilize the conclusion of Lemma 1 to

prove that asymptotic regulation is achieved for the closed loop system. In the rest of the proof,

we only consider the case when β ∈ [b,
xref

1 + xref
Cserver] to simplify the presentation. If instead β ∈

(
xref

1 + xref
Cserver,∞), we apply similar analysis to arrive at the conclusion.

From the previous analysis, we can assume without loss of generality that x(t0) > xref by obser-

vation of (1) and (4)∼(5). Thus x(t) > xref , ∀t > t0. We consider the two separate situations when

xbuffer 6 r2 or xbuffer > r2.

1) If xbuffer 6 r2, according to Lemma 1, for all x ∈ [xref , xbuffer], the control input is not

saturated. Apparently for all t > t0, C(x) = C̃d(x). We calculate the derivative of V (x̄(t)) with respect

to t on [t0,∞) using ˙̄x(t) = ẋ(t).

V̇ 6 −α|x̄|2 − (β − b)
︸ ︷︷ ︸

>0

|x̄| 6 0 (14)

The above shows that x(t) meets (2) if x(t0) ∈ [xref , xbuffer]. Furthermore, we define function

W (x̄(t)) := α|x̄|2 +(β−b)|x̄|. Using Barbălat’s Lemma[14], we can prove that when t → ∞, W (x̄(t)) →

0, namely x̄(t) → 0.

2) If xbuffer > r2, we calculate the time derivative of function V (x̄(t)) when x ∈ (r2, xbuffer]

or when x ∈ [xref , r2] respectively. When x ∈ (r2, xbuffer], according to Lemma 1, the control input

saturates, namely C(x) = Cserver.

V̇ = x̄ · ˙̄x = |x̄|

(

−
x

1 + x
Cserver + λ

)

< |x̄|

(

−
r2

1 + r2
Cserver +

xref

1 + xref

Cserver

)

6 0 (15)

We used the relation xref 6 r2 and that when x > 0, x
1 + x is an increasing function of x in the above

derivation. According to (15), x(t) keeps decreasing until x 6 r2.

When x ∈ [xref , r2], the control input is unsaturated, namely C(x) = C̃d(x). V̇ (x̄(t)) satisfies

(14). Thus x(t) meets (2) for all x(t0) ∈ [xref , xbuffer] and according to Barbălat’s Lemma, we conclude

that x̄(t) → 0 when t → ∞. �

In the first plot of Fig. 4, we show that the closed loop system achieves asymptotic regulation

such that x̄ → 0 using the above “high gain” controller. The parameters for the node is Cserver = 5,

x(t0) = 30, xref = 5, xbuffer = 30, b = 2.8. Our controller parameters are α = 0.1, β = 2.805. It

can be verified that with such choice of controller parameters, the control input does not saturate on

[xref , r2] while on (r2, xbuffer], the control input saturates. r2 = 25.029. As a comparison, in the

second plot of Fig. 4, we show the closed loop system simulation using the control law proposed in [6].

Under the same parameters for the node, the queue regulation error is bounded but not converging. In

both simulations, we use sine waves to represent the disturbance traffics.

Asymptotic regulation of a single node Bounded regulation using the control law in [6]
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Fig. 4 Regulation performance of the closed loop system

Remark 2. The above proposed control law is discontinuous at x = xref . This discontinuity

raises theoretical as well as practical difficulties. We refer the reader to [13] concerning the existence

and uniqueness of solutions for differential equation with discontinuous right hand side. As for practical

issues, instead of staying at x = xref when the trajectory reaches {x̄ = 0}, chattering occurs due to

imperfect switching and delay, which is a known phenomenon in sliding mode control. It may excite

un-modelled high frequency dynamics and cause instability[14]. This problem is overcome by using a

continuous approximation of the discontinuous control law, as shown below.

A continuous controller design

Proposition 1. Consider the system defined in (1)∼(3). Suppose λ(t) satisfies Assumption 1,

where 0 < b 6
xref

1 + xref
. For all x(t0) ∈ [0, xbuffer] at t = t0 > 0, the trajectory x(t) meets (2) for all

t > t0 and is ultimately confined to
{

xref 6 x < xref + ε
}

(16)

if the following control law is used

C =

{
0, x 6 xref

C̃c(x), otherwise
(17)

C̃c(x) =
1 + x

x
[αx̄ + βsat

(
x̄

ε

)

]

where α > 0 and β > b are constants. ε is a design parameter which determines the ultimate bound

on queue state x. It is chosen to satisfy

0 < ε 6 xbuffer − xref (18)

and is chosen to be small in practice for a good approximation of the discontinuous control law.

Proof. According to the previous analysis, we consider only the situation when x(t0) > xref .

Due to that the PE condition in Assumption 1 holds, we can extend the analysis for the case when

x(t0) > xref to the case when x(t0) < xref . As in the discontinuous case, we prove only for the case

when β ∈ [b,
xref

1 + xref
Cserver] for simplicity.

First we notice that according to Lemma 1, the solutions to the equation g = 0, r1 and r2, satisfy

(13). Without loss of generality, we only consider the situation when xbuffer > r2 and assume that ε

is chosen small enough such that

0 < ε 6 r2 − xref < xbuffer − xref

For any x(t0) > xref , it can be shown from (1) and (17) that x(t) > xref on [t0,∞). Similar to the

proof of Lemma 1, we can show that the control law is unsaturated when x(t) ∈ [xref + ε, r2]; the

control law is saturated when x(t) ∈ (r2, xbuffer]. Consider V (x̄(t)) = 1
2 x̄2(t) and calculate V̇ along

the solutions of the closed-loop system.

a) When x(t) ∈ (r2, xbuffer], since C(x(t)) = Cserver, along the trajectories of the closed loop

system, V̇ satisfies (15). This implies that x(or x̄) strictly decreases until x 6 r2.

b) When x(t) ∈ [xref + ε, r2], the control law is unsaturated, C(x(t)) = C̃c(x(t)). Simple calcula-

tion yields that V̇ satisfies (14). This implies that x̄(t) decreases until x ∈ [xref , xref + ε).

The above analysis reveals that the trajectory for any given x(t0) ∈ [xref , xbuffer] is bounded and

is ultimately confined to the boundary layer defined by (16). �

4 Recursive design for cascaded nodes
In this section, we extend the above controller

design for a single node to a system composed of

n cascaded nodes, as shown in Fig. 5. n is an arbi-

trary positive integer. According to the physics of

network, the interfering traffics between any two

nodes are affected by the activity level of the inter-

fering node, which can be characterized, in part,

Fig. 5 A network with n cascaded nodes
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by the queue length of the interfering node[15]. Under such consideration, we use the following extension

of the single node model to represent the system of cascaded nodes3).

ẋ1(t) = −
x1(t)

1 + x1(t)
C1 + λ1(t, x2(t))

ẋ2(t) = −
x2(t)

1 + x2(t)
C2 + λ2(t, x3(t)) (19)

...

ẋn(t) = −
xn(t)

1 + xn(t)
Cn + λn(t)

where notations have the same meanings as introduced in model (1)∼(3) except for that subscript i

denoting the ith subsystem (the i-th node). The model is valid for

xi ∈ [0, x
[i]
buffer] (20)

Ci ∈
[

0, C[i]
server

]

(21)

xref
i ∈

[

ε, x
[i]
buffer

]

(22)

The disturbance traffics λi(t, xi+1) of each node (subsystem) is unknown and time varying. The function

is affected by physical factors such as distance between the nodes, power constraint, whether or not

the nodes are directly connected, etc. We assume in this section:

Assumption 2. For each i = 1, . . . , n, at any fixed initial time instant t0 if xi(t0) < xref
i ,

xref
i <

∫
∞

t0

λi(t, x
ref
i+1)dt 6 ∞ (23)

For all t > t0,

0 6 λi(t, xi+1(t)) 6 bi (24)

lim
t→∞

sup λi(t, x
ref
i+1) < bi (25)

bi > 0, i = 1, . . . , n are constants that satisfy:

bi 6
xref

i

1 + xref
i

C[i]
server

Remark 3. Condition (23) requires that the incoming traffics to node i is “PE” (persistently

exciting), in the sense that if the node is initially under utilized, there will be enough incoming traffics

in the long run. The utilization of the node, characterized by the queue state xi, will reach the desired

level xref
i . We will show that under Assumption 2, if xi(t0) < xref

i , there exists t1 ∈ (t0,∞) such that

xi(t1) > xref
i .

Theorem 3. Consider a network with n cascaded nodes modelled by (19)∼(22). Suppose As-

sumption 2 holds. If the following control law Ci, i = 1, . . . , n, is used,

Ci(xi) =







0, xi < xref
i

C
[i]
server · sat

{
C̃

[i]
d

(xi)

C
[i]
server

}

, xi > xref
i

(26)

C̃
[i]
d (xi) =

1 + xi

xi

[

αix̄i + βisgn(x̄i)
]

(27)

where αi > 0 and βi > bi, ∀i = 1, . . . , n, the queue length of every node meets (20) and the closed

loop system achieves asymptotic regulation. The queue length xi of every node i = 1, . . . , n converges

to xref
i in finite time and then stays at {xi = xref

i }. Furthermore, the control input Ci(xi) meets the

requirement (21).

3) The model considers the system of n cascaded nodes where the interfering traffics to node i is dependant of the
queue length of its preceding node, i + 1. It can be extended to the situation where λi, i = 1, . . . , n − 1 is a nonlinear
function of the states of all its preceding nodes i + 1, . . . , n
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Proof. According to conditions (24) and (25) in Assumption 2, we can prove that under the

control law (26)∼(27), the queue length xi of every node, i = 1, . . . , n, meets the requirement (20),

using similar analysis as in the proof of Theorem 2. We then prove recursively that the cascaded nodes

achieve asymptotic queue length regulation under the saturated control law. We start from node n.

Step 1. For node n, the condition of Assumption 2 reduces to:

1) xref
n <

∫
∞

t0
λn(t)dt 6 ∞ if xn(t0) < xref

n ;

2) 0 6 λn(t) 6 bn for all t > t0; lim supt→∞
λn(t) < bn.

Since lim supt→∞
λn(t) < bn, there exists t∗ (large enough), such that λn(t) < bn for all t > t∗.

Thus on [t∗,∞), βn − λn(t) > ε for some ε > 0.

We introduce function Vn(x̄n(t)) = 1
2
x̄n(t)2 to show the convergence of x̄n on [t∗,∞). In the rest

of the proof, we consider only the case when βn ∈

[

bn, xref
n

1 + xref
n

C
[n]
server

]

to simplify the presentation.

If instead βn ∈

(

xref
n

1 + xref
n

C
[n]
server,∞

)

, we can use similar argument to arrive at the conclusion. We

first notice, similarly with Lemma 1, that r
[n]
1 , r

[n]
2 , the solutions of equation g = 0 (in this case we add

superscript (subscript) n to stand for node n), satisfy

r
[n]
1 6 xref

n 6 r
[n]
2

Furthermore,

1) If x
[n]
buffer > r

[n]
2 , when xn ∈

[

x
[n]
ref , r

[n]
2

]

, the control input Cn(x) does not saturate; when

xn ∈ (r
[n]
2 , x

[n]
buffer], Cn(x) is saturated (namely Cn(x) = C

[n]
server);

2) If x
[n]
buffer 6 r

[n]
2 , for all xn ∈

[

xref
n , x

[n]
buffer

]

, the control input Cn(x) does not saturate.

From the previous analysis, we can assume without loss of generality that xn(t0) > xref
n . Thus

xn(t) > xref
n , ∀t > t0. We consider only the case x

[n]
buffer > r

[n]
2 to simplify the presentation. We

calculate the time derivative of Vn(x̄n(t)) on [t∗,∞). We calculate separately when xn ∈
(

r
[n]
2 , x

[n]
buffer

]

or xn ∈
[

xref
n , r

[n]
2

]

.

Case 1. When xn ∈ (r
[n]
2 , x

[n]
buffer], the control input is saturated, namely Cn(x) = C

[n]
server.

V̇n = x̄n · ˙̄xn = |x̄n|

(

−
xn

1 + xn

C[n]
server + λn

)

< |x̄n|

(

−
r
[n]
2

1 + r
[n]
2

C[n]
server +

xref
n

1 + xref
n

C[n]
server

)

6 0

We used the relation xref
n 6 r

[n]
2 and that when xn > 0, xn

1+xn
is an increasing function of x in the

above derivation. We have xn(t) keeps decreasing until xn 6 r
[n]
2 .

Case 2. When xn ∈ [xref
n , r

[n]
2 ], the control input is unsaturated, namely Cn(x) = C̃

[n]
d (x).

V̇n(x̄n(t)) satisfies

V̇n = −αn|x̄n|
2 − (βn − λn(t))|x̄n| 6 −αn|x̄n|

2 − ε|x̄n| 6 0

The above analysis shows xn reaches xref
n in finite time and then stays at {xn = xref

n }.

Step 2. We now analyze the subsystem of node n− 1. Applying Assumption 2, for i = n− 1, we

find:

1) If xn−1(t0) < xref
n−1 where t0 is any fixed time instant,

∫
∞

t0
λn−1(t, x

ref
n )dt > xref

n−1;

2) For all t > t0, 0 6 λn−1(t, xn(t)) 6 bn−1, lim supt→∞
λn−1(t, x

ref
n ) < bn−1.

From Step 1, we know that xn converges to xref
n in finite time and then stays at {xn = xref

n }.

Since lim supt→∞
λn−1(t, x

ref
n ) < bn−1, there exists t∗ (large enough) such that for all t > t∗,

λn−1(t, xn(t)) < bn−1

Under the control law (26)∼(27), we can prove that queue state xn−1 of the n−1 subsystem converges to

xref
n−1 asymptotically. Furthermore, xn−1 reaches xref

n−1 in finite time and then stays at {xn−1 = xref
n−1}.

Continuing this process, we arrive at Step n where we focus on node 1. By means of similar

arguments, we can prove that x1 meets (20) and converges to xref
1 asymptotically.

We thus conclude that asymptotic regulation is achieved for all n cascaded nodes. Furthermore,

xi converges to xref
i in finite time and then stays at {xi = xref

i }. �
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Remark 4. Using similar analysis as in the proof of Lemma 1 and Theorem 2, we can also show

that when bi 6 βi <
x

ref
i

1+x
ref
i

C
[i]
server, Ci(xi) does not saturate on [xref

i , min{r
[i]
2 , x

[i]
buffer}], where r

[i]
2 is

the real solution of equation g = 0. g is defined in (11). (In this case since we consider n cascaded

nodes, we should add subscript i to every element of (11) to denote the ith node.)

Fig. 6 shows the regulation of two cascaded nodes. The parameters of the two-node system and

their respective controller parameters are shown in Table 1.

λ1(x2) =
2Cserver · xref

1

π(1 + xref
1 )

arctan(0.3x2)

Note that λ1(x
ref
2 ) 6= 0. The traffic disturbances are modelled by sine waves. The controller with

the above parameter settings achieves asymptotic regulations of both nodes, as shown in the figure.

The controller is unsaturated when the queue lengths are close to the reference values. Continuous

approximation can also be used to eliminate possible “chattering” behaviors. It is omitted due to space

limitations.

Fig. 6 The regulation of two cascaded nodes

Table 1 Simulation parameters for two cascaded nodes system

node 1 node 2

Buffer sizes xbuffer 30 30

Initial values x(t0) 30 30

Reference values xref 12 5

Service capacities Cserver 5 10

Bounds on interferences λ1(x2) b2 = 2.8

Controller parameter α 0.1 0.1

Controller parameter β 3.7 2.805

5 Conclusions

Through theoretic analysis and simulation comparison with previous work, we conclude that our

sliding mode control law improves the queue regulation, as compared with [6], by achieving asymptotic

regulation. Physical constraints on the control input and the state variables have been addressed. The

same type of controller has been applied to the system composed of n cascaded nodes. In the future,

we will address the following issues:

1) the decentralized control design for the regulation problem of large scale networks with general

structure4);

4) Note that a preliminary study of decentralized regulation of the large scale system composed of many nodes has
been presented in [12] using “low gain” controller
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2) other dynamics that affect the traffic patterns in the network such as the dynamics of TCP/IP

data sources and wireless mobile units.
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the Ph.D. degree in automatic control and mathematics from the École des Mines de Paris, Paris, France, in
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