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Abstract This paper summarizes recent progress by the authors in developing two solution frame-
works for dual control. The first solution framework considers a class of dual control problems
where there exists a parameter uncertainty in the observation equation of the LQG problem. An
analytical active dual control law is derived by a variance minimization approach. The issue of how
to determine an optimal degree of active learning is then addressed, thus achieving an optimality
for this class of dual control problems. The second solution framework considers a general class of
discrete-time LQG problems with unknown parameters in both state and observation equations. The
best possible (partial) closed-loop feedback control law is derived by exploring the future nominal
posterior probabilities, thus taking into account the effect of future learning when constructing the
optimal nominal dual control.
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1 Introduction

Feldbaum, in his pioneer work[1] about 40 years ago, pointed out that, when implementing op-

timal control for stochastic systems with parameter uncertainty, except for a few ideal situations, the

controller usually pursues two often conflicting goals: (i) to drive the system towards a desired state,

and (ii) to perform learning to reduce the systems uncertainty. Function (i) is usually featured by

caution because when providing the control function, the controller should not use the estimated pa-

rameters blindly as if they were true, therefore avoiding an enlargement of the impact of the existing

uncertainties on the cost. Function (ii) is usually accompanied by active probing , because in multistage

control problems where observations are made on the system at each stage the controller might be able

to carry out active information gathering by using the observations obtained to enhance estimation for

unknown system parameters. Such a devised control, which not only affects the state of system but

also affects the quality of estimation, is the so-called dual control.

The dual roles of dual control, optimization and estimation, in general situations, cannot be

separated. Thus the best control must have a characteristic of appropriately distributing its energy

between functions (i) and (ii). However, the complicated coupling between optimization and estimation

results in, in most situations, an unattainability of an analytical law of dual control.

Although considerable progress has been made in the past 40 years in both theory and practice of

dual control. Much more efforts are needed to better our understanding of dual control and to achieve

satisfactory solution methods. In 2000, IEEE Control Systems Society listed the dual control as one of

the 25 most prominent subjects in the last century which had significantly impacted the development

of control theory.

Prominent features and fundamental properties of dual control have been extensively studied in

the literature[2∼4] etc. Previous efforts in dual control have mainly been devoting to developing certain

suboptimal solution schemes, such as certainty equivalence scheme and open-loop feedback control,

by bypassing the essential feature of coupling in dual control. Most resulting suboptimal control laws

are of a nature of passive learning, due to that the function of future active probing of the control is

purposely deprived in order to achieve an analytical attainability in the solution process. An analysis

of various approximations in dual control is given in [5]. Surveys on dual control can be found in [6]

and [7].
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To power a control law with a property of active learning, which is indispensable in reducing

reducible system’s uncertainty, is a key to developing an optimal control law in dual control. Solution

schemes[8∼11] have been proposed in the literature to attach certain variance terms of the state or the

innovation process into the objective function or use it as a constraint in order to force the control

to perform active learning. These solution schemes, however, truncate the time horizon into shorter

time periods of one stage, prompting a concern of possible myopic behaviors. The authors of this

paper have recently proposed some novel solution methods to derive dual control laws with an active

learning property and have solved the optimal dual control problem for LQG problems with unknown

parameters only in the observation equation[12∼15], thus advancing the state-of-the-art of dual control.

In Section 2, the dual control problem is presented and the related technical difficulties in deriving

its optimal solution are discussed, serving as both the background and a motivation for the development

in the later sections. In Section 3, we illustrate how an analytical optimal dual control law can be derived

by a variance minimization approach for LQG problems with unknown parameters in the observation

equation. In Section 4, we demonstrate that the optimal nominal dual control is the best possible

(partial) closed-loop control law for general LQG problems with uncertain parameters in both state

and observation equations. The paper concludes in Section 5 with a summary of the developed two

solution frameworks.

2 Optimal dual control problem

We consider in this paper the following stochastic optimal control problem where parameter

uncertainties exist in both the state equation and the observation equation,

(G) min E

{

x
′(N)Q(N)x(N) +

N−1
∑

k=0

[x′(k)Q(k)x(k) + u
′(k)R(k)u(k)] | I0

}

s.t. x(k + 1) = A(k, θ)x(k) + B(k, θ)u(k) + w(k), k = 0, 1, · · · , N − 1

y(k) = C(k, θ)x(k) + v(k), k = 1, 2, · · · , N

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control vector, y(k) ∈ Rp is the measured

output vector, and I0 is the initial information set that includes information about the probability

distribution of the initial state x(0), the statistics of the random sequences {w(k)} and {v(k)}, and

the prior probability distribution of the unknown parameter θ. {w(k)} and {v(k)} are two inde-

pendent Gaussian white noises with means zero and variances σ2
w and σ2

v, respectively. The initial

state x(0) is assumed to be Gaussian which is independent of the process and observation noises:

x(0) ∼ N(x̂(0), P (0)). Matrices A(k, θ), B(k, θ) and C(θ, k) are of appropriate dimensions and depend

on an unknown parameter θ. It is assumed that θ belongs to a finite set Θ = {θ1, θ2, . . . , θs} and

is a constant over the whole control horizon. The a-priori probabilities of parameter θ are given as

qi(0) = P (θ = θi | I0). Further, {Q(k)} and {R(k)} are sequences of positive semidefinite and positive

definite symmetric matrices of appropriate dimensions, respectively. Define the information set at stage

k to be Ik, Ik = {u(0), . . . , u(k − 1), y(1), . . . , y(k), I0}, k = 0, 1, . . . , N.

The dual control problem for (G) is to find a closed-loop control, u(k) = fk(Ik), k = 0, 1, . . . , N−1,

such that the performance index in (G) is minimized.

There exist two types of uncertainties in problem (G): i) the white noises from outside of the

system, {w(k)} and {v(k)}, by which the state variables and measurement variables are distorted; and

ii) the unknown system parameters, θ, whose uncertainty could be caused by a changing environment

or some deteriorating conditions, for example, components breakdown during system operating. The

first type of uncertainty is called irreducible uncertainty. This kind of uncertainties can not be removed

or reduced, while Kalman filter or other estimation schemes can be used to trace out the true systems

state. The second type of uncertainty caused by an unknown mode of the parameter θ is called reducible

uncertainty. This type of uncertainty can be reduced, or can be even completely removed by learning.

Problem (G) differs from the classical LQG where only irreducible uncertainty exists. In dual control,

a fundamental question is how much efforts of active learning should be placed to reduce the reducible

uncertainty in order to achieve the optimality of the overall objective for problem (G).

When assuming θ = θi, the state estimate at stage k, x̂i(k|k), can be obtained by the Kalman
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filter:

x̂i(k|k) = x̂i(k|k − 1) + Fi(k)[y(k) − C(k, θi)x̂i(k|k − 1)] (1)

x̂i(k|k − 1) = A(k − 1, θi)x̂i(k − 1|k − 1) + B(k − 1, θi)u(k − 1) (2)

Fi(k) = Pi(k|k − 1)C′(k, θi)[C(k, θi)Pi(k|k − 1)C′(k, θi) + σ2
v]−1 (3)

Pi(k|k − 1) = A(k − 1, θi)Pi(k − 1|k − 1)A′(k − 1, θi) + σ2
w (4)

Pi(k|k) = [I − Fi(k)C(k, θi)]Pi(k|k − 1) (5)

with initial condition of x̂i(0|0) = x̂(0) and Pi(0|0) = P (0).

Based on the observations, the posterior probability of model i at stage k, qi(k), can be calculated

recursively as follows[16]

qi(k) =
Li(k)

s
∑

j=1

qj(k − 1)Lj(k)

qi(k − 1), k = 1, 2, . . . , N

with initial condition qi(0), where

Li(k) = |Py(k|k − 1, θi)|
− 1

2 exp[−1
2 ỹ(k|k − 1, θi)

′Py(k|k − 1, θi)
−1ỹ(k|k − 1, θi)]

(6)
ỹ(k|k − 1, θi) = y(k) − C(k, θi)x̂i(k|k − 1), Py(k|k − 1, θi) = C(k, θi)Pi(k|k − 1)C′(k, θi) + σ2

v

Define for i = 1, 2, . . . , s and k = 1, 2, . . . , N − 1,

Ji(k, Ik) = E{x′(k)Q(k)x(k) + u
′(k)R(k)u(k)|θi, I

k}, Ji(N, IN) = E{x′(N)Q(N)x(N)|θi, I
N}

Then the following is obvious,

J(k, Ik) = E{x′(k)Q(k)x(k) + u
′(k)R(k)u(k) | Ik

}

=
s

∑

i=1

qi(k)Ji(k, Ik), k = 0, 1, . . . , N − 1

J(N, IN) = E{x′(N)Q(N)x(N) | IN} =
s

∑

i=1

qi(N)Ji(N, IN)

From the principle of dynamic programming, the closed-loop control that minimizes the perfor-

mance index in problem (G) can be obtained by solving the following,

J(I0) = min
u(0)

E

{

s
∑

i=1

qi(0)Ji(0, I0) + min
u(1)

E

{ s
∑

i=1

qi(1)Ji(1, I1) + . . . + min
u(k)

E
{

s
∑

i=1

qi(k)Ji(k, Ik) + . . . +

min
u(N−1)

E[

s
∑

i=1

qi(N − 1)Ji(N − 1, IN−1) +

s
∑

i=1

qi(N)Ji(N, IN)|IN−1] . . . |Ik
}

. . . |I ′

}

|I0

}

(7)

Rewriting (7) in a backward recursive form yields the Bellman equation

J∗(k, Ik) = min
u(k)

E{xT(k)Q(k)x(k) + u
T(k)R(k)u(k) + J∗(k + 1, Ik+1)|Ik} (8)

where J∗(k, Ik) is the optimal cost-to-go from time k to the end. The terminal condition is J∗(N, IN) =

E{xT(N)Q(N)x(N)|IN}.

In principle, the dual control problem (G) can be solved using (7) or (8). However, the difficulty

and complexity in solving (G) only begin with these equations. In fact, at stage k all the posterior

probabilities in later stages are unknown. Therefore, to derive the cost-to-go functions in the stochastic

dynamic programming form (8) is a formidable problem. Unless all the posterior probabilities in later

stages can be found, we are not able to solve these functional equations. The curse of uncertainty of the

posterior probabilities in later stages is further compounded by the required expectation operators. One

probably can choose to reasonably approximate the posterior probabilities in later stages or cost-to-go

functions. For example, if future learning is not considered, we can fix all the posterior probabilities
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in later stages at their current values and the open-loop optimal feedback control can be obtained by

solving the following problem,

min
u(k)

s
∑

i=1

qi(k)

{

E
{

Ji(k, Ik) + . . . + min
u(N−2)

E{Ji(N − 2, IN−2)+

min
u(N−1)

E[Ji(N − 1, IN−1) + Ji(N, IN )|IN−1]|IN−2} . . . |Ik
}

}

The open-loop feedback control is a passive scheme that does not possess an active learning feature

and does not consider any impact from the future learning, and thus can never be optimal.

3 Variance minimization method

In this section, we discuss a special case of problem (G) and achieve an optimal dual control law.

Consider the following optimal control problem,

(P) min E

{

x
′(N)Q(N)x(N) +

N−1
∑

k=0

[x′(k)Q(k)x(k) + u
′(k)R(k)u(k)] | I0

}

s.t. x(k + 1) = A(k)x(k) + B(k)u(k) + w(k), k = 0, 1, · · · , N − 1 (9)

y(k) = C(k, θ)x(k) + v(k), k = 1, 2, · · · , N (10)

where A(k) and B(k) are known and parameter uncertainty only exists in C(k, θ).

Optimal solution to problem (P) was not identified for many years due to an analytical complexity

in the cost-to-go function when applying dynamic programming. Essentially, this analytical complexity

is caused by certain nonlinear terms of the state estimation which are nonseparable in the sense of

dynamic programming. A passive learning algorithm (DUL) was proposed[17] by Deshpande et al.

3.1 A passive learning algorithm

Using the formula of the iterated expectation, minimizing the expected performance index in (P)

is equivalent to

min Eθ

{

E{x′(N)Q(N)x(N) +
N−1
∑

k=0

[x′(k)Q(k)x(k) + u
′(k)R(k)u(k)] | θ, I0} | I0

}

DUL adopts an approximation by interchanging the minimization and the first expectation,

Eθ

{

minE{x′(N)Q(N)x(N) +

N−1
∑

k=0

[x′(k)Q(k)x(k) + u
′(k)R(k)u(k)] | θ, I0} | I0

}

which leads to an analytical form of a suboptimal control law for (P):

u(k) = −Γ (k)x̂(k), k = 0, 1, . . . , N − 1

where Γ (k) = D(k)B′(k)S(k + 1)A(k), D(k) = [B′(k)S(k + 1)B(k) + R(k)]−1, S(k) = A′(k)S(k +

1)A(k) + Q(k) − A′(k)S(k + 1)B(k)D(k)B′(k)S(k + 1)A(k), k = N − 1, . . . , 1, with the boundary

condition S(N) = Q(N). Assigning the current posterior probabilities as the weighting coefficients, the

control in the DUL Algorithm is a weighting sum of the optimal control for s different models. It is a

passive learning algorithm because the control does not probe.

Casiello and Loparo[16] later proved that this passive control law in DUL is optimal to the following

modified problem of (P),

(Mp) min E(Ĵ) = E{x′(N)Q(N)x(N) +

N−1
∑

k=0

[x′(k)Q(k)x(k) + u
′(k)R(k)u(k)]−

N−1
∑

k=0

[x(k) − x̂(k)]′T (k)[x(k) − x̂(k)] | I0}

s.t. Eq.(9) and Eq.(10)
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where T (k) = A′(k)S(k + 1)B(k)D(k)B′(k)S(k + 1)A(k), k = N − 1, . . . , 1, 0.

The only difference between problems (P) and (Mp) is that a summation of weighted conditional

covariances is subtracted in (Mp) from the original performance index in (P). As pointed by Casiello

and Loparo[16], subtracting the conditional covariance weighted by the sequence {T (k)} balances out

the function of active learning such that the passive learning controller becomes optimal in this context.

Active learning is, however, indispensable for achieving an optimality in the primal problem (P) with

a parameter uncertainty.

Notice that the smoothing property does not hold for Jk(x̂(k)) when function Jk is nonlinear, i.e.,

E{Jk(E[x(k + 1) | Ik+1]) | Ik} 6= Jk(E[x(k + 1) | Ik]). In other words, a nonlinear term of the state

estimation is nonseparable in the sense of dynamic programming. Investigating further on (Mp), we

can also conclude that subtracting the conditional covariance weighted by the sequence {T (k)} removes

these nonlinear terms involving the conditional mean of the state in the recursive equation of dynamic

programming, thus making the problem tractable.

3.2 An active-learning control algorithm

The success degree of an active learning can be measured by the variance of the final state.

Therefore minimizing a variance term of the final state will add a feature of active learning to the

derived control law. In this subsection, we consider a modified problem of (Mp) in which a variance

term at the final stage is attached to the objective function of (Mp),

(Ma(µ)) min {E(Ĵ) + µTr[Cov(x(N) | I0)]} =

min{E(Ĵ) + µE([x(N) − E(x(N) | I0)]′ × [x(N) − E(x(N) | I0)] | I0)}

s.t. Eqs.(9) and (10)

where T (k) = A′(k)S(k + 1)B(k)D(k)B′(k)S(k + 1)A(k), S(k) = A′(k)S(k + 1)A(k) + Q(k) − T (k),

D(k) = [B′(k)S(k + 1)B(k) + R(k)]−1, S(N) = Q(N) + µI . Parameter µ ∈ [0,∞) is a weighting

coefficient of active learning and Tr denotes the trace of a square matrix. A larger µ implies that more

importance has been placed on probing (active learning and uncertainty reduction).

Problem (Ma(µ)) is difficult to be solved directly, since the recursive equation of dynamic pro-

gramming involves certain nonlinear terms of the state estimation (conditional mean) which introduces

a nonseparability in the sense of dynamic programming. In order to overcome this difficulty, a solu-

tion scheme similar to Li and Ng[18] is adopted to embed problem (Ma(µ)) into a tractable auxiliary

problem which is separable in the sense of dynamic programming. Solving the auxiliary problem and

investigating the relationship between the solution sets of problem (Ma(µ)) and the auxiliary problem,

the optimal control of problem (Ma(µ)) can be identified.

The performance index of (Ma(µ)) can be written as J(J1, J2) = J1 − µJ ′
2J2, where J1 = E{Ĵ +

µxT(N)Q(N)x(N)|I0} and J2 = E(x(N) | I0). It is easy to see that the performance index in (Ma(µ)),

J , is a concave function of J1 and J2.

The following auxiliary problem is now constructed for problem (Ma(µ)) with a fixed multiplier

vector λ ∈ Rn,

(A(λ, µ)) min J1 − 2λ
′J2

s.t. Eq.(9) and Eq.(10)

Theorem 1. Suppose that {u∗(k)} is an optimal control of problem (Ma(µ)), then {u∗(k)} is

also an optimal control of the auxiliary problem (A(λ∗, µ)) where λ∗ satisfies

λ
∗ = −

1

2

∂J(J1, J2)

∂J2
|{u

∗(k)}= µJ2 |{u∗(k)}

The implication of Theorem 1 is that any optimal solution to problem (Ma(µ)) is in the set of

solutions to auxiliary problem (A(λ, µ)). Note that the auxiliary problem is strictly convex with respect

to {u(k)}. Thus the solution to (A(λ, µ)) is unique for a given λ and can be obtained by using dynamic

programming.

Theorem 2. For a given λ, the optimal control of the auxiliary problem (A(λ, µ)) is

u
∗(k) = −Γ1(k)x̂(k) + Γ2(k)λ, k = 0, 1, . . . , N − 1 (11)
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where for k = N − 1, N − 2, . . . , 1, 0,

Γ1(k) = D(k)B′(k)S(k + 1)A(k)

Γ2(k) = D(k)B′(k)L′(k + 1)

L(k) = L(k + 1)[A(k) − B(k)Γ1(k)]

with the boundary conditions S(N) = Q(N) + µI and L(N) = I .

Define

Φ(k) = I − µ

{ N−1
∑

s=k+1

N−1
∏

i=s

[A(i) − B(i)Γ1(i)]B(s − 1)Γ2(s − 1) + B(N − 1)Γ2(N − 1)

}

Ψ(k) = µ

N−1
∏

i=k

[A(i) − B(i)Γ1(i)]

Theorem 3. Assume that Φ(0) is invertible. Then the optimal λ∗ with which the optimal

solution to (A(λ∗, µ)) solves (Ma(µ)) is equal to λ∗ = Φ−1(0)Ψ(0)x̂(0).

The optimal control of (Ma(µ)) can be then obtained by substituting the optimal λ into the

optimal control law of the auxiliary problem (A(λ, µ)),

u
∗(k) = −Γ1(k)x̂(k) + Γ2(k)Φ−1(0)Ψ(0)x̂(0).

The above optimal control law depends on both estimations of the initial state and the current

state and thus is not of a full-feedback nature which is desirable in stochastic control. The optimal

control law of (Ma(µ)) can be further improved as follows.

As proceeding to stage k, we can view stage k as the initial stage and x̂(k) as the estimation

of the initial state when we consider a truncated dual control problem from stage k to stage N .

Based on the principle of optimality and the concept of a rolling horizon, using the same derivation

scheme as in Theorem 3, the optimal value of λ should be λ∗ = Φ(k)−1Ψ(k)x̂(k). Substituting

the optimal λ∗ into (??), we get the optimal full-feedback control law u(k) = −Γ (k)x̂(k), where

Γ (k) = Γ1(k) − Γ2(k)Φ(k)−1Ψ(k).

3.3 Optimal degree of active learning

An optimal full-feedback control is derived in the last subsection for problem (Ma(µ)) with a fixed

value of µ. Recall that µ represents a degree of active learning in dual control. This subsection will

address the issue of how to determine an optimal degree of active learning, which leads to an algorithm

to determine the weighting coefficient µ in (Ma(µ)).

Our ultimate goal is to derive an optimal control law for the primal problem (P). It is evident

that the solution to problem (Ma(µ)) will become an optimal solution to problem (P) if we select a

parameter µ such that the last two terms in the performance index of (Ma(µ)) cancel out each other

on average, i.e.,

µE{[x(N) − E(x(N) | I0)]′[x(N) − E(x(N) | I0)] | I0} =

E

{ N−1
∑

k=0

[x(k) − x̂(k)]′T (k)[x(k) − x̂(k)] | I0

}

and this cancellation should be independent of control u.

Let us consider more general situations. Different time stages may require different degree of

active learning. Assume that the current stage is l. The value of µ at stage l should be adjusted based

on the information set I l such that

µE{[x(N) − E(x(N) | I l)]′[x(N) − E(x(N) | I l)] | I l} =

E

{ N−1
∑

k=l

[x(k) − x̂(k)]′T (k)[x(k) − x̂(k)] | I l

}

(12)
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The right-hand side of (12) is hard to evaluate, since it involves expected values of squares of the state

estimation. We consider in the following an approximation of (12) by replacing the state estimation

x̂(k) by a forecasted mean of x(k) at stage l,

µE{[x(N) − E(x(N) | I l)]′[x(N) − E(x(N) | I l)] | I l} =

E

{ N−1
∑

k=l

[x(k) − E(x(k) | I l)]′T (k)[x(k) − E(x(k) | I l)] | I l

}

(13)

Equation (13) can be written in the following form,

µTr[Cov(x(N)|I l)] =

N−1
∑

k=l

Tr[T (k)Cov(x(k)|I l)] (14)

Assume that no new information will be collected from the current time l to time N . At time l

all the information available to the controller is contained in I l. Define

x̂i(k | l) = E{x(k)|I l, θ = θi}, l 6 k 6 N

Pi(k | l) = E{[x(k) − x̂(k | l)][x(k) − x̂(k | l)]′|I l, θ = θi}, l 6 k 6 N

Then for l 6 k 6 N , we have

x̂i(k | l) = A(k − 1)x̂i(k − 1 | l) + B(k − 1)u(k − 1)

Pi(k | l) = A(k − 1)Pi(k − 1 | l)A′(k − 1) + σ2
w

with the initial conditions x̂i(l | l) and Pi(l | l). The forecasted mean of x(k) with l 6 k is E(x(k)|I l) =
∑s

i=1 qi(l)x̂i(k | l) and the forecasted covariance of x(k) (see [16]) is

Cov(x(k)|I l) =

s
∑

i=1

qi(l)Pi(k | l)+

∑

16i,j6s,i6=j

qi(l)qj(l)[x̂i(k | l) − x̂j(k | l)][x̂i(k | l) − x̂j(k | l)]′

Notice that the forecasted covariance of x(k), Cov(x(k)|I l), is independent of the control applied at

and after stage l, since for any k > l, 1 6 i, j 6 s, and i 6= j,

x̂i(k | l) − x̂j(k | l) =
k−1
∏

t=l

A(t)[x̂i(l | l) − x̂j(l | l)]

Let ∆k = Cov(x(k)|I l)/Tr[Cov(x(N)|I l)], then (14) can be rewritten as

µ =

N−1
∑

k=l

Tr[T (k)∆k] (15)

In the above equation T (k) is function of µ while ∆k is independent of µ. Generally speaking, it

is difficult to find an analytic solution of µ such that (15) holds. Thus we construct the following

unconstrained optimization problem

min
µ

(

µ −
N−1
∑

k=l

Tr[T (k)∆k]

)2

(16)

and use the gradient method to search for an optimal value of µ, where the gradient can be derived as

follows.

Theorem 4.

∂T (k)

∂µ
= Ā′(k)Ā(k) − [B̄(k)Γ1(k) − Ā(k)]′[B̄(k)Γ1(k) − Ā(k)]
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where for k = N − 1, N − 2, . . . , 0,

Ā(k) = [B̄(k + 1)Γ1(k + 1) − Ā(k + 1)]A(k)

B̄(k) = [B̄(k + 1)Γ1(k + 1) − Ā(k + 1)]B(k)

with boundary conditions Ā(N) = I, B̄(N) = 0, Γ1(N) = 0.

3.4 On-line optimal control law

The on-line optimal control law for dual control problem (P) is given as follows.

Optimal Dual Control Algorithm for (P):

Step 0. Set k = 0.

Step 1. Estimate x̂k based on Ik, the information set available at stage k.

Step 2. Calculate Cov(x(t) | Ik), t > k. Obtain the optimal value of µ by solving optimization

problem (16) with l = k.

Step 3. Calculate {S(k)}, {T (k)}, {Γ1(k)}, {Γ2(k)}, and {Γ (k)}. (Note that all these matrices

need to be calculated on-line, since they depend on the value of parameter µ which is adjusted on-line

at every stage.)

Step 4. Calculate Φ(k) and Ψ(k). Calculate the optimal control u(k) at stage k.

Step 5. Apply u(k) to the system. If k=N − 1, stop; Otherwise, set k=k +1, go back to Step 1.

4 Optimal nominal dual control

We consider the general dual control problem (G) in this section. The key research issue is

what is the best possible (partial) closed-loop control for (7) and what is the active learning strategy

to achieve this best possible outcome. A major difficulty in solving (7) is that the optimal control

cannot be determined when the future posterior probabilities are unknown, while at the same time the

future posterior probabilities depend on the control applied at the early stages. In order to break up

this loop, besides fixing all the posterior probabilities in later stages at their current values, a possible

better solution scheme is to derive the relationship between the posterior probability and the control. A

control which satisfies a deterministic version of this relationship is defined as the nominal control. The

expected posterior probabilities when applying the nominal control are called nominal future posterior

probabilities. Applying the nominal future posterior probabilities generated by the nominal control,

the effect of future learning can be taken into account. Since in this situation, all the achievable future

information is used in terms of its expected value, the control law obtained can be considered to be the

best possible closed-loop control law in this sense.

Let the current time be indexed as k. For given λt = [λt
1, . . . , λ

t
s]

′ ∈ Rs
+, t = k, k + 1, . . . , N , with

the currently known λk=[q1(k),q2(k),. . .,qs(k)]′, consider the following optimal control problem,

(ONC(λ)) min E

{ N
∑

t=k

(

s
∑

i=1

λt
iJi(t, I

t))

}

s.t. xi(t + 1) = Ai(t)xi(t) + Bi(t)u(t) + w(t),

t = k, k + 1, · · · , N − 1, i = 1, 2, · · · , s

yi(t) = Ci(t)xi(t) + v(t),

t = k + 1, k + 2, · · · , N, i = 1, 2, · · · , s

where Ai(k) = A(k, θi), Bi(k) = B(k, θi), Ci(k) = C(k, θi), and xi(k) and yi(k) are the state and

observation of the ith fictitious system, respectively, when assuming θ = θi.

Let

X(k) = [x′
1(k), x′

2(k), . . . , x′
s(k)]′, Y (k) = [y′

1(k), y′
2(k), . . . , y′

s(k)]′

Ā(k) = diag(A1(k), A2(k), . . . , As(k)), B̄(k) = [B′
1(k), B′

2(k), . . . , B′
s(k)]′

C̄(k) = diag(C1(k), C2(k), . . . , Cs(k)), Q̄(k) = diag(λk
1Q(k), λk

2Q(k), . . . , λk
sQ(k))

D1 = [In, In, . . . , In]′, D2 = [Ip, Ip, . . . , Ip]
′
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where diag denotes a block diagonal matrix. We can obtain a compact form for the above multi-model

formulation of (ONC(λ)) as follows,

min E

{

X ′(N)Q̄(N)X(N) +

N−1
∑

t=k

[X ′(t)Q̄(t)X(t) + u
′(t)R(t)u(t)] | Ik

}

s.t. X(t + 1) = Ā(t)X(t) + B̄(t)u(t) + D1w(t), t = k, k + 1, · · · , N − 1

Y (t) = C̄(t)X(t) + D2v(t), t = k + 1, · · · , N

Define X̂(t) = [x̂′
1(t|t), x̂

′
2(t|t), . . . , x̂

′
s(t|t)]

′, then the optimal solution to (ONC(λ)) can be derived

by using dynamic programming,
u

∗(t) = −Γ (t)X̂(t) (17)

where for t = k, k + 1, . . . , N − 1

Γ (t) = −G−1(t)B̄′(t)S(t + 1)Ā(t), G(t) = B̄′(t)S(t + 1)B̄(t) + R(t)

S(t) = Ā′(t)S(t + 1)Ā(t) + Q̄(t) − Γ
′(t)G(t)Γ (t)

with boundary condition S(N) = Q̄(N). Note that the optimal control, {u∗(t)}N−1
t=k , is linear in X̂ and

is λ dependent.

At stage k, the true observation y(k) is known, therefore x̂i(k|k) can be obtained by the Kalman

filter given in (1) to (5). Since future observations can not be known in advance, a predicted nominal

state trajectory {x̂∗
i (t)}

N
t=k+1 and a predicted nominal observation trajectory {ŷ∗

i (t)}
N
t=k+1, can be

calculated by setting all random variables at their expected values, i.e.

x̂
∗
i (t + 1) = Ai(t)x̂

∗
i (t) + Bi(t)u

∗(t), t = k, k + 1, . . . , N − 1

ŷ
∗
i (t) = Ci(t)x̂

∗
i (t), t = k + 1, k + 2, . . . , N

with initial condition x̂∗
i (k) = x̂i(k|k).

For t = k+1, k+2, . . . , N , let X̂(t)
.
= [x̂∗

1(t)
′, x̂∗

2(t)
′, . . . , x̂∗

s(t)
′]′, and then substituting X̂(t) back

into Eq.(17), we can calculate a predicted nominal control.

Comparing problem (ONC(λ)) with the closed-loop control problem (7) at stage k, it is easy to

verify that if the values of λt
i stand for the posterior probabilities at every stage, the optimal control of

problem (ONC(λ)) is also optimal to problem (G) at stage k. However, those posterior probabilities at

the later stages are unattainable. A feasible way is to use the nominal posterior probabilities generated

by the nominal control instead. The control law achieved under this framework is referred to as the

optimal nominal dual control to the original problem.

Define ŷ∗(t) =
∑s

i=1 λt
iŷ

∗
i (t) for t = k + 1, k + 2, . . . , N . Using the Bayes formula, the predicted

nominal posterior probability of mode i at stage k, i = 1, 2, . . . , s, satisfy the following recursive

equation:

q̃i(t) =
Li(t)

s
∑

j=1

q̃j(t − 1)Lj(t)

q̃i(t − 1), t = k + 1, k + 2, . . . , N (18)

with initial condition qi(k), where Li(t) is the same as in Eq. (??), except in the present case,

ỹ(t|t − 1, θi) = ŷ∗(t) − ŷ∗
i (t).

Note from (18) that q̃i(t) is a function of λk, λk+1, . . . , λN . Furthermore, the weighting coefficient

λt
i should be equal to the nominal posterior probability q̃i(t) for all t = k+1, k+2, . . . , N , in generating

the nominal control. We thus construct the following optimization problem at stage k to find out the

optimal λt, t = k + 1, . . ., N ,

(O) min

N
∑

t=k+1

s
∑

i=1

(λt
i − q̃i(t))

2

s.t.
s

∑

i=1

λt
i = 1, and all λt

i > 0, t = k + 1, . . . , N
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The gradient method can be used to search for the optimal value of λt
i. Although the derivative of each

q̃i(t) with respect to λk
j is very involved, it can be obtained, see [13] for details.

The above derived optimal nominal dual control law can be implemented via the following algo-

rithm.

Optimal Nominal Dual Control Algorithm for (G):

Step 0. Set k = 0.

Step 1. Estimate x̂k based on Ik, the information set available at stage k. Calculate the posterior

probabilities at stage k, qi(k) for i = 1, 2, . . . , s.

Step 2. Let λk
i = qi(k). Use the gradient method to solve problem (O) in order to find out the

optimal values of λt
i, i = 1, 2, . . . , s, t = k + 1, k + 2, . . . , N .

Step 3. Calculate matrices {Γ (t)}, {G(t)}, {S(t)}, t = k, k + 1, . . . , N . Calculate the optimal

nominal control u∗(k) = −Γ (k)X̂(k).

Step 4. Apply u∗(k) to the system. If k = N − 1, stop; Otherwise, set k = k + 1, go back to

Step 1.

5 Conclusions

In dual control, we need to consider the information flows in both directions. The current control

affects the future probability description of the reducible uncertainty in the system. At the same time,

the future evolution of the systems uncertainty will also influence the current control to be determined.

One important fact is that the optimal dual control not only relies on the current information, but also

depends on the impact of the future learning. Such a coupling relationship results in an intractable

problem setting, thus a challenge in developing a solution method. The challenge is to break up the

coupling loop.

Two innovative solution methodological frameworks have been introduced and summarized in

this paper. Both solution methodological frameworks offer dual control laws with an active learning

feature. The first methodological framework can be applied to situations where parameter uncertainty

only exists in the observation equation. This framework can be described via its three major steps: i)

Appropriately modifying the performance index in the original problem generates a tractable modified

problem and obtains a corresponding analytical suboptimal control law. ii) Attaching a variance term

of the final state to the modified performance index forces an addition of a learning feature to an

active dual control law, while at the same time retaining the tractability of the modified problem. iii)

Calculating an optimal degree of the active learning converts the performance index in the modified

problem back to the original performance index on average, thus making the active dual control law

optimal to the original dual control problem. The second methodological framework can be applied to

general dual control problems where the parameter uncertainty exists in both state and observation

equations. Adopting the concept of the nominal posterior probability enables us to calculate the future

learning impact on the optimal determination of the current control, thus forming the best possible

partial closed-loop feedback control. Prominent numerical results have been observed when performing

these two solution methodological frameworks in various testing problems, while comparing with other

existing methods in the literature.
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