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Abstract This paper presents several neural network based modelling, reliable optimal control, and
iterative learning control methods for batch processes. In order to overcome the lack of robustness
of a single neural network, bootstrap aggregated neural networks are used to build reliable data
based empirical models. Apart from improving the model generalisation capability, a bootstrap
aggregated neural network can also provide model prediction confidence bounds. A reliable optimal
control method by incorporating model prediction confidence bounds into the optimisation objective
function is presented. A neural network based iterative learning control strategy is presented to
overcome the problem due to unknown disturbances and model-plant mismatches. The proposed
methods are demonstrated on a simulated batch polymerisation process.
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1 Introduction

Batch processes are suitable for the agile manufacturing of high value added products, such as

specialty polymers, pharmaceuticals, and bio-products[1]. In contrast to continuous processes, batch

processes have strong nonlinear behaviour and always operate in transient states. A further difficulty

in batch process control is that product quality variables usually cannot be measured on-line and can

only be obtained through laboratory analysis after a batch has finished. The main objective in batch

process control is to produce a maximum amount of high quality product while under safe process

operations. The calculation of optimal control policy requires an accurate process model capable of

predicting the product quality at the end of a batch, i.e., the model should be capable of providing

accurate long range predictions. These characteristics make the control of batch processes much more

complex than the control of a continuous process and novel non-traditional techniques are required[1].

The core in optimal batch process control is an accurate model cable of providing accurate long

range predictions of product quality. In earlier works on the optimal control of batch processes, mecha-

nistic models are usually used[2,3]. However, mechanistic models of complex batch processes are usually

difficult to develop, especially in responsive processes regarding changing market needs and in multi-

product manufacturing. The time taken to develop phenomenological process models has tended to

limit the manufacturing applications of mechanistic model based optimal control strategies.

To overcome the difficulties in developing mechanistic models, neural network models based upon

process operational data have been widely proposed. Neural networks have been shown to be capa-

ble of approximating any continuous non-linear functions[4,5] and have been applied to batch process

modelling and control[6∼9]. Neural networks for non-linear process modelling can be broadly divided

into two categories: static networks, including multi-layer feed forward neural networks and radial

basis function networks, and dynamic networks which include globally recurrent neural networks[10],

locally recurrent neural networks[11,12], Elman networks[13] and dynamic filter networks[14]. Static

neural networks can provide quite accurate one-step-ahead predictions and are suitable for situations

where short-range predictions are the main focus. Such networks are relatively easy to build. Dynamic

neural networks are more appropriate for the building of long range prediction models and providing

multi-step-ahead predictions[10∼12]

This paper is organised as follows. Section 2 presents reliable neural network modelling through

combination of multiple neural networks. Section 3 presents a simulated batch polymerisation process.
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Reliable optimal control of batch processes is given in Section 4. Section 5 presents a neural network

model based iterative learning control strategy. Section 6 draws some concluding remarks.

2 Reliable neural network model

An important requirement for industrial applications of neural network model is that the model

should possess good accuracy and robustness, i.e., the model should have good generalisation capability

and reliability. The accuracy and robustness of neural network models are usually determined by the

training data and training methods. When the amount of training data is not sufficient, neural network

training tends to over-fit the measurement noise within the training data, leading to large generalisation

errors. Ideally, a large amount of training data should be available in order to build accurate neural

network models. In industrial processes, data for process variables are usually abundant since they

can be automatically measured and recorded by process control computers. However, data for product

quality variables are usually obtained from off-line laboratory analysis and, hence, are usually not

abundant. Product quality variables are usually sampled at a large sampling time.

Neural network model accuracy and robustness are also affected by network training methods.

Since many network training methods are gradient based, different initial weights and different stop-

ping criteria can lead to different network generalisation capability. Some techniques for improving

neural network generalisation have been reported recently. One of the techniques is training with

regularisation[5,15,16] . The purpose of adding a regularisation term is to prevent unnecessarily large

network weights that can lead to large errors on unseen data. Another method for improving network

generalisation is to introduce an “early stopping” mechanism in gradient based network training. Data

for building a neural model is divided into a training data set and a testing data set. During the

training process, both network errors on the training and the testing data sets are monitored. Network

training is stopped when the testing error cannot be further reduced. “Early stopping” is an implicit

way to implement regularisation[17] .

Neural network generalisation can also be enhanced through a parsimonious network structure. A

parsimonious network can be obtained in two ways. One is to first train a network with many hidden

nodes and then reduce the number of hidden nodes through network pruning[18,19]. The other one is to

start from a small number of hidden neurons and then gradually add on more hidden neurons through

a sequential orthogonal training method[11,12].

Another very effective method for improving neural network generalisation capability is to first

develop a group of neural networks and then combine them[20∼25]. Mixture models such as Adaptive

Mixture of Experts[22] and Hierarchical Mixture of Experts[26] use the divide and conquer approach

where a mixture of experts compete to gain responsibility in modelling the output in a given input

region. The system’s output is obtained as a linear combination of the experts’ output and the combi-

nation weights are computed as a function of the inputs. The different experts are usually trained on a

single data set simultaneously by minimising a combined cost function and the final combination of the

experts is determined by a gating module which is constructed in the same training session. Wolpert

proposed a stacked generalisation technique for combining models to reduce the model generalisation

errors[24]. A novel feature of stacked generalisation is that it attempts to simultaneously solve the

problem of model selection and estimation of model combinations to improve model prediction. Cho

and Kim used fuzzy logic to combine multiple neural networks[20] and showed significantly improved

performance in handwriting character recognition. Breiman proposed a new method for aggregating

multiple models using bootstrap re-samples of the training data, known as Bagging[27] . A set of boot-

strap re-sampled data represent a sub-space of the original training data set. Models are developed on

different bootstrap re-sampled data sets then combined together. The models can be neural network

models[25] or other models such as principal component regression (PCR) or partial least square (PLS)

models[28]. Since the models developed on bootstrap re-samples model the same relationship between

the process inputs and outputs, they are usually highly correlated. Zhang et al. proposed using PCR to

combine the individual networks and overcome the problem of severe correlations among the individual

models[25].

Fig. 1 shows an aggregated neural network. The output of the aggregated neural network is a

weighted combination of the outputs from the individual networks.
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f(X) =

n
∑

i=1

wifi(X) (1)

where f(X) represents an aggregated neural network model, fi(X) is the ith neural network, wi is the

weight for combining the i-th neural network, X is a vector of neural network model inputs.

Fig. 1 An aggregated neural network

Let y be the expected model output and ŷ the output of the i-th neural network. Then the

outputs from all the n networks can be represented by the following matrix:

Ŷ = [ŷ1 ŷ2 · · · ŷn] (2)

where each column represents a neural network model. The vector of the aggregated neural network

model output, ŷagg, can be written as

ŷagg = Ŷ w = w1ŷ1 + w2ŷ2 + · · · + wnŷn (3)

The combination weights obtained from linear regression can be expressed as:

w = (Ŷ TŶ )−1Ŷ Ty (4)

Due to the severe correlation among the individual networks, Ŷ TŶ will be singular or very close to

singular. Therefore, the combination weights obtained from Eq.(4) will be very sensitive to computation

errors or measurement noise.

The author proposed a method using PCR to obtain the combination weights in order to overcome

this problem[25]. The matrix Ŷ can be decomposed as a summation of several matrices of rank one:

Ŷ = t1p
T
1 + t2p

T
2 + · · · + tnpT

n (5)

In the above equation, ti and pi are, respectively, the i-th score vector and the i-th loading vector.

The score vectors are mutually orthogonal and so as the loading vectors, which are furthermore of

unit length. The first loading vector, p1, defines the direction of the largest data variation. The first

score vector, t1, also known as the first principal component, represents the projection of Ŷ on p1.

Therefore, the first principal component, t1 = Ŷ p1, is such a linear combination of the columns in Ŷ

that it can maximally explain the data variations. The second principal component, t2 = Ŷ p2, is such

a linear combination of the columns in Ŷ that it can maximally explain the data variations excluding

those represented by the first principal component and is orthogonal to the first principal component.

Principal components are arranged in the order of data variations that they can explain. Since the

columns of Ŷ are usually highly correlated, the first a few principal components can explain the major

data variations in Ŷ .

The aggregating weights can then be obtained using PCR. Suppose that the first k principal

components are used and they are represented by Tk(Tk = Ŷ Pk), where Pk = [p1 p2 . . . pk]; then the

aggregated neural network can be represented as:

ŷagg = Tkθ = Ŷ Pkθ (6)
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The least square estimation of the parameter θ can be obtained as:

θ = (TT
k Tk)−1TT

k y = (PT
k Ŷ TŶ Pk)−1PT

k Ŷ Ty (7)

Thus the aggregating weights, w, obtained from PCR are given by

w = Pkθ = Pk(PT
k Ŷ TŶ Pk)−1PT

k Ŷ Ty (8)

The procedure for building an aggregated neural network model can be summarised as follows.

First generate several replications of the original data for building a neural network model using boot-

strap re-sampling[29]. Then develop a neural network model on each of the replications. Finally combine

these individual neural network models using PCR.

In addition to possessing good generalisation capability, another advantage of aggregated neural

network models is that they can provide prediction confidence bounds. Bootstrap re-sampling can be

used to estimate the standard model prediction errors[29,30] . The prediction confidence bounds can be

obtained from the standard model prediction errors. Model prediction confidence bounds offer addi-

tional information about the model predictions. Wider confidence bounds indicate that the associated

model predictions are less reliable and vice versa. Process operator can accept or reject a particular

model prediction based on the model prediction confidence bounds.

Tibshirani compares several methods for computing neural network model prediction confidence

bounds[30] and points out that the bootstrap method is better than other methods. The bootstrap

method for calculating model prediction confidence bounds can be summarised as:

Step 1. Generate B samples, each one of size n drawn with replacement from the n training ob-

servations {(x1, y1), (x2, y2), . . . , (xn, yn)}. Denote the b-th sample by {(xb
1, y

b
1), (x

b
2, y

b
2), . . . , (x

b
n, yb

n)}.

Step 2. For each bootstrap sample b = 1, 2, . . ., B, train a neural network model. Denote the

resulting neural network weights by W b.

Step 3. Estimate the standard error of the ith predicted value by

{

1

B − 1

B
∑

b=1

[y(xi; W
b) − y(xi; ·)]

2

}1/2

where y(xi; ·) =
∑B

b=1 y(xi; W
b)/B.

Step 4. The 95% confidence bounds can be obtained by taking plus and minus 1.96 times the

standard error of the mean of the predicted value.

3 A batch polymerisation process

The simulated batch polymerisation reactor studied here is based on a pilot scale polymerisation

reactor installed at the Department of Chemical Engineering, Aristotle University of Thessaloniki,

Greece. The reaction is the free-radical solution polymerisation of methyl methacrylate (MMA) with

a water solvent and benzoyl peroxide initiator. A schematic diagram of the reactor is shown in Fig. 2.

The reactor is provided with a stirrer for thorough agitation of the reacting mixture. Heating and

cooling of the reacting mixture is achieved by circulating water at an appropriate temperature through

Fig. 2 A batch polymerisation process

the reactor jacket. The reactor temperature is con-

trolled by a cascade control system consisting of a

primary PID and two secondary PI controllers. The

reactor temperature is measured through a temper-

ature sensor (TT) and fed back to the primary con-

troller whose output is taken as the setpoint of the

two secondary controllers. The two secondary con-

trollers manipulate the cold water (CW) and the hot

water (HW) flow rates so that the mixed water is

circulated through the reactor jacket at appropriate

temperatures. The temperature of the circulating

water at the jacket exit is measured through a tem-

perature sensor (TT) and fed back to the two sec-

ondary controllers.
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A detailed mathematical model covering reaction kinetics and heat and mass balances has been

developed for the bulk polymerisation of MMA[31,32] . Based on this model, a rigorous simulation

program was developed and used as the real process to generate polymerisation data under different

batch operating conditions and to test the developed control strategies.

4 Reliable optimal control of batch process

A problem in batch process optimal control is that, due to the presence of model-plant mismatches,

the optimal control policy obtained from a model may not give optimal performance when applied to

the actual process. Ruppen et al. proposed a method where a discrete probability distribution of some

uncertain model parameters in a mechanistic model is assumed and used in a differential/algebraic

optimisation problem[33]. A difficulty associated with this technique is that a mechanistic model needs

to be first developed and the distribution of uncertain model parameters needs to be identified. Ter-

wiesch et al. proposed a technique to optimise a probabilistic measure of success that accounts for

possible uncertainties or variations in model parameters[34]. This technique also requires the probabil-

ity distribution of uncertain model parameters. The technique is suitable for situations where a small

number of parameters in a mechanistic model are uncertain and their probability distributions can be

identified. An empirical data based model, such as a neural network model, usually contains a large

number of model parameters and it is generally very difficult to identify the probability distributions

of these model parameters.

The author proposed a method to improve the reliability of empirical model based batch process

optimal control by incorporating the model prediction confidence bounds into the objective function[35].

The modified objective function penalises wide model prediction confidence bounds so that the obtained

optimal control policy would give good control performance when applied to the actual process, i.e.,

the obtained control policy is reliable.

In the batch polymerisation process, the batch duration is usually no more than 180 minutes. Here

let the possible batch duration be from 60 to 80 min. Since polymer quality variables are typically

difficult to be measured on-line, usually only a few samples of quality variables can be made within

a batch. Here we assume that monomer conversion, number average molecular weight, and weight

average molecular weight are measured every 20 min starting from 60 min into the reaction. Hence,

there are up to 7 samples of polymer quality measurements within a batch. The control variables

considered here are the initial reactor temperature setpoint for the time interval [0 min, 40 min] and

the reactor temperature setpoints at the following time intervals [40 min, 60 min], [60 min, 80 min], . . .,

and [160 min, 180 min]. These reactor temperature setpoints form a control trajectory for the reactor.

Here an aggregated neural network is used to model the process and the model is of the following

form:

Y (tN) = f(I0, U(tN )) (9)

where Y (tN) = [Conv(tN )Mn(tN )Mw(tN)]T, U(tN ) = [Tsp0Tsp1Tsp2 . . . TspN ]T, Tsp0 to TspN are the

trajectory of reactor temperature setpoints in the time interval [0, tN ], I0 is the initial initiator weight,

and Conv(tN ), Mn(tN ), and Mw(tN) are the monomer conversion, the number average molecular

weight, and weight average molecular weight at time tN respectively. In the above model, tN can take

one of the following values: 60, 80, 100, 120, 140, 160, and 180 minutes. When using this model in

optimal control, each of these values is considered as a possible batch ending time and the best batch

ending time is selected based on the optimisation results.

Here simulated process data from 50 batches were produced. The control policies for these batches

were obtained from Monte Carlo simulation. Noises were added to the data to represent the effect of

measurement noise. Bootstrap re-sampling was used to produce 30 replications of these data. On each

replication of the data, 7 neural networks were developed to model the polymer quality variables at the

7 possible batch ending times. Each network is a single hidden layer network with 10 hidden neurons.

Network weights were initialised as random numbers within (−0.1, 0.1) and networks were trained

using Levenberg-Marquardt optimisation algorithm[36] with regularisation and “early stopping”. The

developed networks were combined using PCR. Further 20 batches of data were produced to evaluate

the aggregated network model.

Fig. 3 gives the sum of squared errors (SSE) of individual networks on the training and testing
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data and on the unseen validation data. It can be seen that the individual networks give inconsistent

performance on the training and testing data and on the unseen validation data. This indicates that

the unreliability and poor generalisation capability of the individual networks. The minimum SSE of

the individual networks on the training and testing data is 18.0 while that on the unseen validation

data is 19.0. The SSE of the aggregated network on the training and testing data is 9.8 while that

on the unseen validation data is 13.8. Therefore, the aggregated neural network significantly enhanced

model prediction accuracy.

Fig. 3 Errors of individual networks

In order to enhance the reliability of neural network model based control, model prediction con-

fidence bounds are introduced in the optimisation objective function as follows:

min
U,tf

J = [1 − Conv(tf )]2 + wtf + λTσe(tf )

s.t. 0.85 6 Mn(tf )/Mnd(tf ) 6 1.15 (10)

2 6 Pd(tf) 6 3

324 6 ui 6 352, 1 6 i 6 8

where U = [u1 u2 . . .]T is a vector of control actions (reactor temperature setpoints), u1 is the

reactor temperature setpoint for the time interval [0 min, 40 min], u2 to u8 are the reactor temperature

setpoints for the time intervals [40 min, 60 min], . . ., and [160 min, 180 min], Conv is the predicted

monomer conversion, tf is the batch ending time, w is a weighting factor for batch duration (w =

0.0001 min−1 in this study), σe = [σ1 σ2 σ3]
T is a vector of standard prediction errors in Mn, Mw,

and Conv respectively, λ = [λ1 λ2 λ3]
T is a vector of weightings for σe, Mn is the predicted number

average molecular weight, Mnd is the desired value of Mn, and Pd(= Mw/Mn) is the polydispersity

of the polymer.

This optimisation objective intends to maximise the monomer conversion with reduced batch time.

Higher conversion means efficient utilisation of raw materials while short batch time represents more

product being produced within a given time. The last term in the objective function is for penalising

wide model prediction confidence bounds leading to reliable optimal control.

Since model-plant mismatches are unavoidable, the constraints on product quality in Eq.(10)

should be soft constraints, which can be violated to certain extents. Here the hard constraints that

must be satisfied are selected as:

0.8 6 Mn(tf )/Mnd(tf ) 6 1.2 (11)

1.8 6 Pd(tf ) 6 3.2 (12)
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The differences between soft and hard constraints represent a back off reflecting the extent of

model-plant mismatches. If the model-plant mismatches are large, then the back off should be larger

and vice versa.

Since the aggregated neural network model can only predict product quality at 20 min interval

starting from 60 min into the reaction, here the possible batch ending time is selected from one of the

following values: 60, 80, ..., and 180 minutes. When solving the optimisation problem, each of the

possible batch ending time is used as the final batch time and the following optimisation problem is

solved:

min
U

J = [1 − Conv(tf )]2 + wtf + λTσe(tf )

s.t. 0.85 6 Mn(tf )/Mnd(tf ) 6 1.15 (13)

2 6 Pd(tf ) 6 3

324 6 ui 6 352, 1 6 i 6 8

Then the objective functions at the 7 possible batch ending times are compared. The batch ending

time corresponding to the lowest objective function values is selected as the best batch ending time.

Here Mnd is selected as 1.9 × 105g/mol representing a particular polymer product. Optimal

reactor temperature control policy is obtained through solving this optimisation problem using the

sequential quadratic programming (SQP) method.

The following cases were studied: Case 1 − λT = [0 0 0]; Case 2 − λT = [0.05 0.05 0.05];

Case 3−λT = [0.1 0.1 0.05]; Case 4−λT = [0.15 0.15 0.05]; Case 5−λT = [0.2 0.2 0.05]; and

Case 6–single neural network model based optimal control. In the single neural network based optimal

control, the optimisation objective function is similar to Eq.(10) but without the term for penalising

wide model prediction confidence bounds. The single neural network used is the first network of the 30

individual networks. It can be seen from Fig. 3 that this network is among the best of the individual

networks.

Fig. 4 shows the minimal objective function values for the 6 cases at different batch ending times.

It can be seen from Fig. 4 that the best batch duration is 100 min in all case studies. Fig. 5 gives the

control policy (reactor temperature setpoint) and reactor temperature in Cases 1, 5, and 6. It can be

seen that the control policies are quite different. Fig. 6 shows the standard prediction errors in Case 1

to Case 5. Fig. 7 shows the actual (mechanistic model simulated) and neural network model predicted

product quality variables in Case 1 to Case 6. The horizontal dotted lines and dash-dotted lines in

Fig. 7 represent the hard and soft constraints respectively. The effect of penalising wide prediction

confidence bounds is clearly seen from Figs. 6 and 7. In Case 1, due to no penalisation, the model

prediction confidence bounds under the optimal control policy are quite wide. This means that the

model predictions under this optimal control policy are not reliable and so is the optimal control policy.

This is further verified by the simulation results given in Fig. 7. With this control policy implemented

on the actual process (i.e. on the mechanistic model based simulation), the product quality can neither

satisfy the hard constraints nor the soft constraints. Under this optimal control policy, the network

model predicted Mn, Pd, and Conv are 1.85×105g/mol, 3.0, and 0.92 respectively. However, the actual

Mn, Pd, and Conv under this “optimal” control are 1.39× 105g/mol, 3.71, and 0.89 respectively. This

indicates that the neural network model predicted performance is not realised on the actual process

and, therefore, the optimal control policy is not reliable.

As the weightings on the standard prediction errors are increased, the aggregated neural network

model prediction confidence bounds are becoming narrower (Fig. 6), and the actual final product quality

moves toward the constraints (Fig. 7). In Case 2, the hard constraints on Mn are satisfied but those

on Pd are still not satisfied. In Case 3, as the weighting on the standard prediction errors is further

increased, the hard constraints on both Mn and Pd are satisfied. With the weightings on the standard

prediction errors increased, the soft constraints on Mn and Pd are satisfied in Case 5. It can be seen

from Fig. 6 that when the weightings on the standard prediction errors are increased to those of Case

3, the reductions in standard prediction errors become less significant. Therefore, the weights in Case

3 can be selected as the appropriate weights.
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Fig. 4 Minimal objective function values at different batch ending times

Fig. 5 Control policy and reactor temperature in Cases 1, 5 and 6

Fig. 6 Standard prediction errors in Case 1 to Case 5
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Fig. 7 Actual and neural network model predicted product quality variables

It can be seen from Fig. 7 that large differences exist between the single neural network predicted

values and the actual values. The single neural network predicted final Mn is on the lower limit of

the soft constraint, but the actual final Mn exceeds the upper limit of the soft constraint. Figs. 8 to

10 show, respectively, the trajectories of Conv, Mn, and Pd under the control profiles in Cases 1, 5,

and 6. The horizontal dotted lines and dash-dotted lines in Figs. 9 and 10 represent the hard and soft

constraints respectively. It can be seen from Fig. 10 that the values of Pd at the batch end in Cases 1

and 6 significantly exceed its hard constraints. This indicates that the optimal control in Cases 1 and

6 can lead to off specification products. Therefore these two “optimal” control policies are not optimal

at all.

Fig. 8 Monomer conversions in Cases 1, 5 and 6

Fig. 9 Mn in Cases 1, 5 and 6
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Fig. 10 Pd in Cases 1, 5 and 6

5 Iterative learning control of product quality

Due to the existence of model-plant mismatches and unknown disturbances, the optimal control

policy calculated from a neural network model may not be optimal when applied to the actual process.

The repetitive nature of batch processes allow the information of previous batch runs to be used to

improve the performance of later batch runs.

The first order Taylor series expansion of Eq.(9) around a nominal control profile can be expressed

as

ŷ(tf ) = f0
∂f

∂u1
4u1 +

∂f

∂u2
4u2 + · · · +

∂f

∂uN
4uN (14)

where 4u1 to 4uN are deviations in the control profile from the nominal control profile.

For the k-th batch, the actual product quality can be written as the model prediction plus an

error term

ŷk(tf ) = ŷk(tf ) + ek (15)

where yk(tf ) and ŷk(tf ) are, respectively, the actual and model predicted final product quality, and ek

is model prediction error.

The model prediction for the (k+1)-th batch can be represented using the first order Taylor series

expansion based on the k-th batch:

ŷk+1(tf ) = ŷk(tf ) +
∂f

∂u1

∣

∣

∣

∣

Uk

(uk+1
1 − uk

1) + · · ·
∂f

∂uN

∣

∣

∣

∣

Uk

(uk+1
N − uk

N ) = ŷk(tf ) + GT4Uk+1 (16)

where

4Uk+1 = [4uk+1
1 4uk+1

2 . . . 4uk+1
N ]T

GT =

[

∂f

∂u1

∣

∣

∣

∣

Uk

∂f

∂u2

∣

∣

∣

∣

Uk

· · ·
∂f

∂uN

∣

∣

∣

∣

Uk

]T

Suppose that the model prediction errors are the same for the k-th batch and the (k + 1)-th batch;

then the optimal control of the (k + 1)-th batch can be represented as:

min
4Uk+1

J =‖ ŷk(tf ) + GT4Uk+1 + ek − yd ‖2
Q + ‖ 4Uk+1 ‖2

R (17)

where Q is the weighting for product quality control errors and R is the weighting for control action.

Let ∂J
∂4Uk+1 = 0. Then the optimal control updating can be expressed as:

4Uk+1 = (GQGT + R)−1GQ(yd − ŷk(tf ) − ek) (18)

Uk+1 = Uk + 4Uk+1 (19)

For a neural network model, the gradient of the model output with respect to the control policy U ,

G, can be calculated analytically. If the neural networks used are single hidden layer networks with

the sigmoidal function as the activation function for hidden neurons and the linear function as the
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activation function for the output layer neurons, then the element on the i-th row and j-th column of

G, Gij , can be computed as follows:

Gij =
∂yi

∂uj
=

nh
∑

k=1

∂yi

∂O k

∂Ok

∂uj
=

nh
∑

k=1

W k,i
2 Ok(1 − Ok)W j,k

1 (20)

where nh is the number of hidden neurons, Ok is the output of the k-th hidden neuron, W k,i
2 is the

weight from k-th hidden neuron to the i-th output layer neuron, W j,k
1 is the weight from the j-th input

layer neuron to the k-th hidden neuron.

This method was applied to the batch polymerisation process. Here the desired product quality

variables, Mn, Mw, and conversion, were selected as yd = [2 × 105 5 × 105 1]T, the weighting

matrix Q was selected as Q = [2 × 10−5 8 × 10−6 4]T, the weighting matrix R was selected as

R = [0.1 0.1 0.1 0.1]T, and the reactor temperature was constrained to the range 320◦K to 360◦K.

Applying the optimal control policy calculated from the neural network model to the actual

process (i.e. the mechanistic model based simulation), the resulting final product quality are as follows:

Mn(tf ) = 1.3898 × 105g/mol, Mw(tf ) = 5.1655 × 105g/mol, and X(tf ) = 0.8924. It can be seen that

significant differences exist between the desired product quality and actual product quality. This is due

to the model-plant mismatches of the neural network model.

Fig. 11 gives the results of applying iterative learning control. It can be seen from Fig. 11 that

the control performance was significantly improved in the 2nd batch and further improved in the 3rd

batch. The control performance is still improving after the 3rd batch but not very significantly. This

indicates that the iterative learning control is almost converged after 3 batches. The final product

quality variables at the 10th batch are: Mn(tf ) = 1.8735 × 105g/mol, Mw(tf ) = 4.9134 × 105g/mol,

and X(tf ) = 0.8432. This indicates that the iterative learning control can effectively overcome the

detrimental effects of model-plant mismatches on the optimal control of batch processes. Fig. 12 gives

the final product quality variables at the end of each batch.

In order to demonstrate the effectiveness of iterative learning control on overcoming the detri-

mental effects of unknown disturbances, the initial initiator mass was reduced from its normal value

of 2.5g to 1.9g from batch 11 onward so as to represent the effect of reactive impurities. A practically

very significant problem in batch polymerisation processes is the presence of reactive impurities[37∼39] .

Reactive impurities are mainly due to the recycle of unreacted monomers and usually present as traces

of inhibitors and oxygen. It is shown in [37] that reactive impurities in polymerisation can rapidly

consume free radicals and prevent the growth of polymer particles. The effect of reactive impurities

can usually be simulated as a step decrease in the initial initiator mass.

Fig. 11 Sum of squared control errors Fig. 12 Product quality variables

Due to the presence of reactive impurities from the 11th batch onward, the control policy obtained

at the 10th batch is no longer optimal on the 11th batch. Fig. 11 shows that large control errors were

obtained when the control policy obtained from the 10th batch was applied to the 11th batch. The final

product quality variables at the end of the 11th batch are as follows: Mn(tf ) = 2.4316 × 105g/mol,

Mw(tf ) = 8.7177 × 105g/mol, and X(tf ) = 0.8462, which are much worse than those from the 10th

batch. The process operation was significantly improved in the 12th and the 13th batches through



30 ACTA AUTOMATICA SINICA Vol. 31

iterative learning control. The final product quality variables at the end of the 13th batch are as

follows: Mn(tf ) = 1.9959 × 105g/mol, Mw(tf ) = 6.0527 × 105g/mol, and X(tf ) = 0.8842, which

are very close to the desired product quality. This demonstrates that iterative learning control can

effectively overcome the problems of unknown disturbances in batch processes.

Apart from neural network model based iterative learning control, the author and his co-workers

also proposed techniques for iterative learning control of batch processes based on linearised models

directly identified from process operation data[40], iterative learning control of batch processes based on

incrementally updated linearised models identified from minimum amount of process operation data[41],

and iterative optimisation of batch processes through iterative modification of neural network model

predictions[42].

6 Conclusions

Neural network based techniques for the modelling and optimal control of batch processes are

presented in this paper through applications to a simulated batch polymerisation reactor. It is shown

that bootstrap aggregated neural networks have good generalisation capability and can provide model

prediction confidence bounds. Aggregated neural networks can be effectively used in building models

for batch processes from process operational data. Incorporating the neural network model prediction

confidence bounds into the batch process optimisation objective function can significantly enhance

the reliability of neural network model based optimal control. Utilising the repetitive nature of batch

processes, a neural network model based iterative learning control strategy is presented in this paper and

it is demonstrated that this control strategy can effectively overcome the problems due to model-plant

mismatches and unknown disturbances.
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