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Abstract The problem of state estimation for uncertain systems has attracted a recurring interest
in the past decade. In this paper, we shall give an overview on some of the recent development in
the area by focusing on the robust H2 (Kalman) filtering of uncertain discrete-time systems. The
robust H2 estimation is concerned with the design of a fixed estimator for a family of plants under
consideration such that the estimation error covariance is of a minimal upper bound. The uncertainty
under consideration includes norm-bounded uncertainty and polytopic uncertainty. In the finite horizon
case, we shall discuss a parameterized difference Riccati equation approach for systems with norm-
bounded uncertainty and pinpoint the difference of state estimation between systems without uncertainty
and those with uncertainty. In the infinite horizon case, we shall deal with both the norm-bounded
and polytopic uncertainties using a linear matrix inequality (LMI) approach. In particular, we shall
demonstrate how the conservatism of design can be improved using a slack variable technique. We also
propose an iterative algorithm to refine a designed estimator. An example will be given to compare
estimators designed using various techniques.
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1 Introduction

One of the fundamental problems in control systems and signal processing is the estimation of the

state variables of a dynamic system through available noisy measurements. In the past three decades, this

problem has attracted the interests of many researchers and one of the popular methods is based on the

minimization of the variance of the estimation error, i.e., the celebrated Kalman filtering approach (see, e.g.

[1]). The filtering algorithm requires the knowledge of a perfect dynamic model for the signal generating

system and that the noise sources should be white processes with known statistics. Thus, the standard

Kalman filter may not be robust against modeling uncertainty and disturbances. This has motivated many

studies on design of a robust filter which is able to yield a suboptimal solution with respect to the nominal

system and in addition offer a guaranteed estimation performance for any possible uncertainties under

consideration.

In the past decades, the robust estimation problem has been dealt with under various performance

measures. Of particular interest, the study on robust estimation of systems with norm-bounded parameter

uncertainty under the H∞ performance was initiated in [2,3] which was followed by the study of guaranteed

cost filtering in [4]. The guaranteed cost filtering is concerned with the design of a filter to ensure an upper

bound on the estimation error variances for all admissible parameter uncertainties under investigation and

was first addressed in [5]. The problem is also known as robust Kalman filtering or robust H2 estimation and

has been studied in [4,6∼13] for uncertain continuous-time systems and [14∼ 22] for uncertain discrete-time

systems.

There are essentially two approaches to the robust H2 estimation, namely the Riccati equation ap-

proach and the LMI approach. The Riccati equation approach was applied in the early stage of the

development; see, e.g. [4,6,7,14]. Under this approach, the robust filter design is related to the solutions

of two parameterized Riccati equations. The advantage of this approach is that the effect of parameter

uncertainty on the structure and gain of the optimal filter is clearly demonstrated, which provides useful

insights on the problem. In particular, in the finite horizon, the approach reveals that unlike the classical

Kalman filtering an optimal filter at time k does not necessarily lead to an optimal filter at k + 1. This

implies that the recursive computation of the optimal covariance matrix in the classical Kalman filter is

no longer valid for the robust Kalman filtering. The difficulty of the Riccati equation approach also lies
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in the fact that it requires a search of scaling parameter(s) such that the Riccati equations have solutions

and the estimation error variance is minimized.

In recent years, a lot of interests have been focused on the LMI approach; see e.g. [9,11,12,18,23].

The LMI approach has an advantage in numerical computation and optimization. In fact, it has been

demonstrated that the design of robust filter for systems under either norm-bounded or polytopic parameter

uncertainty can be characterized as a convex optimization involving the LMIs. In the early development,

a fixed Lyapunov function was applied for all the members of the plant family; see e.g. [9,17]. And it is

generally conservative. Much of the recent interest in the area has been towards developing techniques

which could lead to a less conservative design. In [18,22,23], a parameter-dependent Lyapunov function

technique was introduced based on a slack variable technique. The work was inspired by a new result in [24]

on robust stability of uncertain discrete-time systems. The slack variable technique has been demonstrated

to be able to offer much improved results. Very recently, a further reduction of design conservatism has

been proposed in [20] where extra slack variables are introduced.

In this paper, the problem of finite and infinite horizon robust H2 estimation for uncertain discrete-

time systems is revisited. Both the finite horizon and infinite horizon cases are considered. We shall review

the development of the area in the past decade and propose an iterative algorithm to refine a designed

infinite horizon filter. An example will be given to compare estimators designed using various techniques.

The rest of the paper is organized as follows. The system under investigation and the statement

of the robust H2 estimation will be given in Section 2. Section 3 studies techniques for systems with

norm-bounded uncertainty using both the Riccati equation and LMI approaches. Systems with polytopic

uncertainty will be investigated in Section 4. An example will be given to compare various design techniques

of robust H2 estimation in Section 5. Finally, we shall draw some conclusions in Section 6.

2 Problem formulation

Consider the following asymptotically stable system:

xk+1 = Aδxk + Bwk (1)

yk = Cδxk + Dwk (2)

zk = Lxk (3)

where xk ∈ Rn is the system state vector, yk ∈ Rr is the measurement, zk ∈ Rp is the signal to be

estimated and wk ∈ Rm is the noise input with zero-mean and unit variance. The initial state x0 of the

system is a random vector of zero-mean and variance S̄0 > 0 and is independent of wk for any k > 0.

Note that for the case when the process noise and measurement noise are different (usually so in

practice), say B1w1k and D1w2k, we can simply put B = [B1 0], D = [0 D1] and let wk = [wT
1k wT

2k]T

in the system model (1)∼(2).

For the sake of clarity of presentation, we assume that system parameter uncertainty only appears in

Aδ and Cδ whereas B, D and L are known matrices. It should be noted that it is rather straightforward

to extend the solutions of this paper to the case where uncertainty is also present in matrices B, D and L.

Two types of uncertainty are commonly considered in literature, namely, the norm-bounded uncertai-

nty[2,14,15,19] and the polytopic uncertainty[11,13,17,18,20,23] .

a) Norm-bounded uncertainty

In this characterization, we allow the uncertainty to be time-varying and matrices Aδ and Cδ have

the form:

ΩN =

{
(Aδ, Cδ) |

[
Aδ

Cδ

]
=

[
A

C

]
+

[
H1

H2

]
FkE

}
(4)

where Fk = diag{F1k, F2k, · · · , F`k} with Fik ∈ Rαi×βi is an unknown real time-varying matrix satisfying

F
T
ikFik 6 I, ∀k > 0, i = 1, 2, · · · , ` (5)

and H1, H2 and E are known real constant matrices of appropriate dimensions that specify how the

elements of the nominal matrices A and C are affected by the uncertainty in Fk.

b) Polytopic uncertainty
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In this case, matrices Aδ and Cδ belong to the following uncertainty polytope:

ΩP =

{
(Aδ, Cδ) | (Aδ, Cδ) =

Nv∑

i=1

αi(A
(i)

, C
(i)), αi > 0,

Nv∑

i=1

αi = 1

}
(6)

where (A(i), C(i)) is the i-th vertex of the polytope.

Remark 1. Note that by the Schur complement (5) is equivalent to

[
−I FT

ik

Fik −I

]
6 0

Therefore, the uncertainty set ΩN also belongs to a convex set. However, ΩN is in general not a polyhedral

set except for some special cases such as when the uncertainty matrix Fk is diagonal. On the other hand,

since ΩN is a convex set, it is always possible to approximate ΩN using a polyhedral set. But a good

approximation may require a polytope with a large number of vertices which will be numerically costly

in designing a robust H2 estimator as seen later. The norm-bounded uncertainty characterization may be

restrictive in some applications but it is less computationally demanding to design a robust H2 estimator

with such a characterization than that of the polytopic uncertainty.

In this paper, we are concerned with the design of an estimator for the uncertain system (1)∼(3) to

achieve an optimal guaranteed estimation performance regardless of the uncertainty characterized in either

(4) or (6). Both the finite horizon and infinite horizon cases are considered.

In the finite horizon case, the system matrices in (1)∼(3) are allowed to be time-varying, i.e.,

A, B, C, D, L, H1, H2 and E are replaced by Ak, Bk, Ck, Dk, Lk, H1k, H2k and Ek, respectively.

However, for simplicity, we drop the subscript k whenever no confusion is caused.

We consider the following problems.

a) Finite horizon robust H2 estimation

Our objective is to design a robust one-step ahead predictor of the form

(FP ) : x̂k+1 = Âkx̂k + B̂kyk, x̂0 = 0 (7)

ẑk = Lxk (8)

where Âk and B̂k are time-varying matrices to be determined in order that the variance of the estimation

error zk − ẑk is guaranteed to be smaller than a certain bound for all uncertainty matrices Fk satisfying

(5), i.e., the estimation error dynamics satisfies

E [(xk − x̂k)(xk − x̂k)T] 6 Σk (9)

with Σk being an optimized upper bound of the prediction error covariance over the class of robust quadratic

predictors to be defined later, where E denotes the mathematical expectation.

b) Infinite horizon robust H2 estimation

For the infinite horizon case, the system matrices A, B, C, D, L, H1, H2 and E are confined to be

constant matrices and our objective is to design a time-invariant filter

(FF ) : x̂k+1 = Âx̂k + B̂yk, x̂0 = 0 (10)

ẑk = Ĉxk + D̂yk (11)

such that for any uncertainty from ΩN or ΩP the filtering error dynamics ek = xk − x̂k is asymptotically

stable and

E [(xk − x̂k)(xk − x̂k)T] 6 Σ (12)

for a constant matrix Σ = ΣT > 0. Furthermore, trace(Σ) is to be minimized.

Remark 2. In the case of norm-bounded uncertainty, the robust estimation problem in the H∞

sense was first investigated in [2] via a Riccati equation approach. This work was later extended to solve

the robust H2 estimation in [14] and further improved by [15,19]. The difficulty with this approach is the

requirement of solving parameterized Riccati equations which is not easy in general. In particular, when

the uncertainty is of a block-diagonal structure, to reduce the conservatism of design, a scaling matrix is
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usually introduced and the selection of such a scaling matrix for an optimal filtering performance turns out

to be difficult. In [9] and [25], an LMI approach was adopted for the infinite horizon robust H2 estimation.

The nice feature of this approach is that the search of the scaling matrix and filter parameters are convex

and can be easily carried out by using the LMI Toolbox[26].

For the polytoic uncertainty, the LMI approach has attracted significant interest in the past few

years; see, e.g. [12,13,17,18,20,23]. In [17], a convex optimization solution was obtained by applying a

fixed Lyapunov function for all admissible uncertainties, which is conservative. A slack-variable technique

was introduced in [13,18,23] in order to alleviate the design conservatism. Recently, a further improved

result has been achieved by introducing extra slack variables in optimization in [20].

3 Robust H2 filtering of systems with norm-bounded uncertainty

In this section, we shall present solutions to the robust H2 estimation of systems with norm-bounded

uncertainty. For the simplicity of presentation, we assume that BDT = 0 which implies that the process

noise and measurement noise are independent of each other.

3.1 Finite horizon case

In terms of system (1)∼(3) with uncertainty ΩN and predictor (7)∼(8), the state-space equations for

the estimation error ek are as follows:

ξk+1 = (Ā + H̄FkĒ)ξk + Gwk, ξ(0) = ξ0 (13)

ηk = L̄ξk (14)

where ek = xk − x̂k, ξk =
[
eT

k x̂T
k

]T
with ξ0 =

[
xT

0 0
]T

and

Ā =

[
A − B̂C A − Â − B̂C

B̂C Â + B̂C

]
, G =

[
B − B̂D

B̂D

]
(15)

H̄ =

[
H1 − B̂H2

B̂H2

]
, Ē = [E E], L̄ = [L 0] (16)

Definition 1[15,19]. The estimator (7)∼(8) is said to be a robust quadratic one-step ahead predictor

if for some εk > 0, there exists a bounded Σ̄k = Σ̄T
k > 0 that satisfies the following difference Riccati

equation (DRE):

Σ̄k+1 = ĀΣ̄kĀ
T + ĀΣ̄kĒ

T(ε−1
k I − ĒΣ̄kĒ

T)−1
ĒΣ̄kĀ

T + ε
−1
k H̄H̄

T + GG
T (17)

and such that I − εkĒΣ̄kĒT > 0, where Σ̄0 =

[
S̄0 0

0 0

]
.

It is easy to show that for a given robust one-step ahead predictor, an upper bound for the prediction

error covariance can be given by

E(ηkη
T
k ) 6 LΣkL

T (18)

where Σk is the (1,1)-block of Σ̄k.

Before presenting a solution to the optimal robust H2 one-step ahead prediction, we introduce the

following two DREs.

Pk+1 = APkA
T + APkE

T

(
I

εk

− EPkE
T

)−1

EPkA
T +

1

εk

H1H
T
1 + BB

T
, P0 = S̄0 (19)

Σk+1 = AΣkA
T − (AΣkC̃

T
k + B̃kD̃

T
k )(C̃kΣkC̃

T
k + R̃k)−1(AΣkĈ

T
k + B̃kD̃

T
k )T + B̃kB̃

T
k , Σ0 = S̄0

(20)

where

C̃k =
√

εk

[
C

E

]
, B̃k = [B

1√
εk

H1 0]

D̃k =

[
D̄k

0

]
, R̃k =

[
D̄kD̄T

k 0

0 −I

]
, D̄k = [0 H2

√
εkD]

We make the following assumption.
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Assumption 1. rank[A H1 B] = n.

Theorem 2[19]. Consider the uncertain system (1)∼(3) with a single block of uncertainty ΩN (` = 1)

and satisfying Assumption 1. There exists a robust quadratic one-step ahead predictor for the system that

minimizes the bound on the error variance in (18) if and only if for some εk > 0, there exists a solution

Pk = PT
k > 0 over [0, N ] to the DRE (19) such that P−1

k − εkETE > 0.

Under this condition, a robust quadratic one-step ahead predictor with an optimized upper bound of

error covariance is given by

x̂k+1 = (A + Ae,k)x̂k + Kk

[
yk − (C + Ce,k)x̂k

]
, x̂0 = 0 (21)

ẑk = Lx̂k (22)

where
Ae,k = εkAΣkE

T
(
I − εkEΣkE

T
)−1

E (23)

Ce,k = εkCΣkE
T
(
I − εkEΣkE

T
)−1

E (24)

Kk =

(
AQkC

T +
1

εk

H1H
T
2

) (
Rεk

+ CQkC
T
)−1

(25)

Rεk
= DD

T +
1

εk

H2H
T
2 (26)

and Σk = ΣT
k > 0 is a solution of DRE (20) over [0, N ] and satisfies Q−1

k = Σ−1
k − εkETE > 0.

Moreover, the optimized error covariance bound is Σk.

Remark 3. Note from Theorem 2 that the predictor parameters (23)∼(25) are not related to the

solution of DRE (19). However, the existence of a solution to (19) is needed to ensure that the derived

predictor is a robust quadratic one.

The matrices Ae,k and Ce,k of the predictor can be viewed respectively as correction matrices on

A and C in consideration of the norm-bounded uncertainty in Aδ and Cδ. We observe from (20) and

(23)∼(25) that when the parameter uncertainty in system (1)∼(2) disappears, the robust predictor of

Theorem 2 reduces to the standard finite-horizon Kalman predictor for the nominal system of (1)∼(2). In

this situation, (19) becomes redundant.

Remark 4. From Theorem 2, it is clear that the optimal gauranteed one-step ahead prediction

performance at time k depends on system data and the scaling parameters ε0, ε1, · · · , εk−1. This projects

a significant difference between the optimal estimation of systems without uncertainty and that of systems

with uncertainty. For the former case, it is well known that the optimal estimation at time k−1 will lead to

an optimal estimation at k. This enables a recursive calculation of the optimal estimation covariance based

on one DRE. This desirable property, however, is no longer valid for the latter[27]. It means that to obtain

an optimal robust estimator at time k, the scaling parameters ε0, ε1, · · · , εk−2 have to be recomputed

and so do the corresponding solutions of (19) and (20). The optimization over the scaling parameters may

be numerically costly with the increasing value of k.

To reduce the computational complexity, instead of optimizing the cost over all the k scaling param-

eters, we may optimize trace(Σk) over a fixed length of scaling parameters εk−1, εk−2, · · · , εk−d, where d

is called a window in [27] in which a semidefinite programming approach is adopted. This can be done as

follows. Given the computed suboptimal Pk−d and Σk−d, for any k − d 6 i 6 k − 1 it follows from [19]

that given Pi > 0 and Σi > 0, the solution Σi+1 > 0 of (20) exists if 0 < εi < ε̄i = ‖EPiE
T‖−1. Hence, we

can grid the interval (0, ε̄i) and for each εk from the interval calculate the corresponding Pi+1 and Σi+1.

The optimization of trace(Σk) over εk−1, εk−2, · · · , εk−d will then involve the calculation of Pi and Σi of

a tree structure. The optimal solution will be the one with minimal trace(Σk). The performance of the

robust predictor and its computational cost will depend on the size of window, d. The larger the d the

better the performance but the computational cost is also higher. We note that in [28] the case of d = 1

was applied for the design of a suboptimal robust LQR controller.

3.2 Infinite horizon case

In this section we shall address the robust H2 estimation of systems with norm-bounded uncertainty

in the infinite horizon case via an LMI approach. An algebraic Riccati equation approach for the single

block uncertainty case can be found in [19].
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Theorem 3[25]. Suppose that the system (1)∼(3) is quadratically stable (see [29] for the definition).

Then, there always exists a robust H2 filter of the form (10)∼(11). Further, the optimal robust H2 filter

can be obtained by solving the following optimization

min
Γ>0,R>0,S>0,A,B,C,D

trace(Σ) (27)

subject to



−Σ ∗ ∗ ∗
RB + BD −R ∗ ∗

SB −S −S 0

L −DD 0 0 −I


 < 0 (28)




−R + ETΓE ∗ ∗ ∗ ∗ ∗
−S + ETΓE −S + ETΓE ∗ ∗ ∗ ∗

RA + BC A −R ∗ ∗ ∗
SA SA −S −S ∗ ∗

L −DC L − C 0 0 −I ∗
0 0 HT

1 R + HT
2 BT HT

1 S −HT
2 DT −Γ




< 0 (29)

where ‘∗’ denotes entry that can be deduced from the symmetry property of the matrix, Γ = diag{ε1Iα1 ,

ε2Iα2 , · · · , ε`Iα`
} is a scaling matrix and R, S, A, B, C, D are matrices to be determined.

Indeed, given optimal solutions (Γ > 0, R > 0, S > 0, A, B, C, D), an optimal robust H2 filter can

be computed through

MN
T = I − RS

−1 (30)

D̂ = D (31)

Ĉ = (C − DC)S−1
N

−T (32)

B̂ = M
−1B (33)

Â = M
−1(A− RA − MB̂C)S−1

N
−T (34)

Remark 5. It is observed that LMIs (28) and (29) are linear in Γ , R, S, A, B, C and D. Therefore,

the optimization in (27) is convex. As compared to the results in [14,16] where one-step ahead prediction

was considered, the result in Theorem 3 is numerically much more attractive as the former requires search-

ing for scaling parameters for which no effective algorithms are available. Furthermore, Theorem 3 also

allows to handle both the one-step ahead predictor (D̂ = 0) and the filtering cases.

4 Robust H2 filtering of systems with polytopic uncertainty

In this section, we shall study the robust H2 filtering for systems with polytopic uncertainty in the

infinite horizon case. In the past few years, the LMI approach has been prevailing in dealing with this

problem. Here, we shall capture some of these developments. The finite horizon case can be found in [18]

where a DLMI (difference LMI) technique was applied. We shall not address this case here.

First, denote ξ = [xT x̂T]T. It follows from (1)∼(3) and (10)∼(11) that

ξk+1 = Āδξk + B̄wk (35)

zk − ẑk = C̄δξk + D̄wk (36)

where

Āδ =

[
Aδ 0

B̂Cδ Â

]
, B̄ =

[
B

B̂D

]
, C̄δ = [L − DCδ − Ĉ], D̄ = −D̂D (37)

Recall that for any uncertainty from ΩP , an upper bound for the H2 norm square of the system

(35)∼(36) can be computed by the following minimization[18] :

min
P

trace(C̄δPC̄
T
δ + D̄D̄

T) (38)

subject to

ĀδPĀ
T
δ − P + B̄B̄

T
< 0 (39)
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A robust H2 filtering based on a fixed Lyapunov function matrix P was given in [17], which is generally

conservative.

Since the uncertainty in Aδ and Cδ comes from the polytope ΩP , it is clear[30] that (38)∼(39) hold if




Σ C̄(i)G D̄

∗ G + G′ − Pi 0

D̄T 0 I


 > 0 (40)

and 


Pi Ā(i)G B̄

∗ G + G′ − Pi 0

∗ ∗ I


 > 0, i = 1, 2, · · · , Nv (41)

where Ā(i) and C̄(i) denote respectively matrices Āδ and C̄δ at the i-th vertex of the polytope ΩP .

The above result exploits the vertex-dependent parameter Pi. This can be seen as follows. Sup-

pose that (41) is satisfied at all the vertices of ΩP . Then for any uncertainty δ ∈ ΩP , i.e. (Aδ, Cδ) =
Nv∑

i=1

αi(A
(i)

, C
(i)),




Σ C̄δG D̄

∗ G + G′ −
Nv∑

i=1

αiPi 0

∗ ∗ I


 > 0,




Nv∑

i=1

αiPi ĀδG B̄

∗ G + G′ −
Nv∑

i=1

αiPi 0

∗ ∗ I




> 0 (42)

which clearly shows that

Nv∑

i=1

αiPi is a parameter-dependent Lyapunov matrix. A robust H2 one-step ahead

predictor design based on the parameter-dependent Lyapunov function is recalled below.

Theorem 4[18,23]. Consider the system (1)∼(3) with polytopic uncertainty ΩP . The optimal robust

H2 one-step ahead predictor can be given by (10)∼(11) with

Â = MS
−1

, B̂ = M
−1

Z, Ĉ = SC

where matrices M, S, Z and SC are solutions to the following convex optimization:

min
M,R,X,Z,S,SC ,H

(i)
j

, j=1,2,3

trace(Σ) (43)

subject to 


Σ L − SC L

∗ H
(i)
1 H

(i)
2

∗ ∗ H
(i)
3


 > 0 (44)

and



−RT − R + H
(i)
1 −RT − X − MT + H

(i)
2 RTA(i) RTA(i) RTB

∗ −X − XT + H
(i)
3 XTA(i) + ZC(i) + S XTA(i) + ZC(i) XTB + ZD

∗ ∗ −H
(i)
1 −H

(i)
2 0

∗ ∗ ∗ −H
(i)
3 0

∗ ∗ ∗ ∗ −I



<0

(45)

for i = 1, 2, · · · , Nv .

Remark 6. Observe that (44)∼(45) are linear in unknown parameters M, R, X, Z, S, SC , H
(i)
j , j =

1, 2, 3. Hence, the optimization in (43) can be solved by convex optimization using the LMI Tool[26]. It was

demonstrated in [18] that Theorem 4 gives a much less conservative design than that of [17]. Certainly, it

is worth noting that even with the deployment of the parameter-dependent Lyapunov function the result

is still sufficient but not necessary and thus there exists some degree of conservatism. Therefore, efforts

remain to be made to improve the design.
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Note that (39) is equivalent to

[
Āδ B̄

]
diag{P, I}

[
ĀT

δ

B̄T

]
− P < 0 (46)

or [
Āδ B̄

]T

Q
[

Āδ B̄
]
− diag{Q, I} < 0 (47)

where Q = P−1.

The following lemma can be found in [31].

Lemma 1[31]. There exists a matrix Q = QT > 0 to (47) if there exists a solution (F, G, Q(i), i =

1, 2, · · · , Nv) with Q(i) = Q(i)T such that




−diag{Q(i), I} +

[
Ā(i)T

B̄T

]
F + FT[Ā(i) B̄] −FT +

[
Ā(i)T

B̄T

]
G

−F + GT[Ā(i) B̄] Q(i) − (G + GT)


 < 0 (48)

Remark 7. As compared to (41), (48) contains an extra slack variable F which will help reduce the

conservatism in evaluating the H2 performance of a given robust filter. The result was also explored to

give an improved design of robust H2 filter in [20] which is recalled below. When F is set to be zero, (48)

will be reduced to (41).

Theorem 5[20]. Consider the system (1)∼(3) over the polytope ΩP . A filter of the form (10)∼(11)

that gives a suboptimal guaranteed filtering error covariance bound can be derived from the following

optimization

min
(R,W,SA,SB,SC ,SD ,M,H

(i)
1 ,H

(i)
2 ,H

(i)
3 ,i=1,2,···N,λ1,λ2)

trace(Σ)

subject to




λ1(A
(i)TR + RTA(i)) − H

(i)
1 ∗ ∗

λ1W
TA(i) + λ2(SBC(i) + SA) − H

(i)T
2 −λ2(SA + ST

A) − H
(i)
3 ∗

λ1B
TR λ1B

TW + λ2D
TST

B −I

RTA(i) − λ1R −λ1W − λ2M
T RTB

W TA(i) + SBC(i) + SA −SA + λ2M
T W TB + SBD

∗ ∗
∗ ∗
∗ ∗

H
(i)
1 − (R + RT) ∗

H
(i)T
2 − (W T + M) H

(i)
3 + (M + MT)




< 0 (49)

and 


Σ ∗ ∗ ∗
LT − C(i)TST

D − ST
C H

(i)
1 ∗ ∗

ST
C H

(i)T
2 H

(i)
3 ∗

−DTST
D 0 0 I


 > 0 (50)

for i = 1, 2, · · · , Nv. The suboptimal filter is given by

Â = M
−1

SA, B̂ = M
−1

SB , Ĉ = SC , D̂ = SD (51)

Remark 8. It should be mentioned that when λ1 = λ2 = 0 and D̂ = 0, Theorem 5 recovers the result

of Theorem 4 where a one-step ahead predictor is adopted. It is then clear that the result in Theorem 5

is more general and guaranteed to be less conservative than those in Theorem 4 due to the extra degrees

of freedom in optimization provided by the free parameters λ1 and λ2.

Remark 9. Observe that for given λ1 and λ2, (49) and (50) are linear in R, W, SA, SB , SC , SD, M,

H
(i)
1 , H

(i)
2 and H

(i)
3 , and hence can be solved by employing the LMI Tool[26]. The problem is then how to
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find the optimal values of λ1 and λ2 in order to minimize the filtering error variance bound. One way to

address the tuning issue is to first solve the feasibility problem of the LMIs (49)∼(50) with i = 1, 2, · · · , Nv

using Matlab’s LMI toolbox[26] and obtain a set of initial scaling parameters. Then, applying a numerical

optimization algorithm, such as the program fminsearch in the optimization toolbox of Matlab[32] a

locally convergent solution to the problem is obtained. The search is demonstrated in the examples of

Section 5. Based on our experience, this optimization procedure can be efficient for the optimization in

Theorem 5 as it only involves the search of two parameters λ1 and λ2.

Note that Theorem 5 has been derived with a specialized matrix F of the form

F = [ΛG 0]

where Λ = diag{λ1I, λ2I} in order to linearize the matrix inequality[20]. This, however, is restrictive. In

the following we will propose an iterative algorithm which can be applied to refine the filter designed using

Theorem 5.

To this end, we denote

AB
(i)

=

[
A(i) 0 B

0 0 0

]
, ÂB = [Â B̂], CD =

[
0 I 0

C(i) 0 D

]

Then, (48) can be rewritten as



−diag{Q(i), I}+AB

(i)T
F +FTAB

(i)
+CD

(i)T
ÂB

T
[0 I ]F +FT

[
0

I

]
ÂBCD

(i) ∗

−F +GTAB+GT

[
0

I

]
ÂBCD

(i)
Q(i) − (G + GT)


<0

(52)

The following iterative procedure can be applied.

Step 1. Given the filter parameters (Â, B̂, Ĉ, D̂), F , G and Q(i) may be found by minimizing trace(Σ)

subject to (48) and (40). The initial (Â, B̂, Ĉ, D̂) can be the suboptimal filter designed by Theorem 5.

Step 2. With F, G and Q(i) obtained in Step 1, an improved filter can be obtained by minimizing

trace(Σ) subject to (52) and (40).

Repeat the above steps until trace(Σk−1 − Σk) < µ, where µ is a prescribed tolerance and Σk is the

matrix Σ of (40) at the k-th iteration.

It should be emphasized that the above iteration always converges.

5 Illustrative examples

Consider the example in [14]:

xk+1 =

[
0 −0.5

1 1 + δ

]
xk +

[
−6

1

]
wk (53)

yk = [−100 10 ] xk + vk (54)

zk = [1 0]xk (55)

where wk and vk are uncorrelated zero-mean white noise signals with unit variances, respectively. δ is the

uncertain parameter satisfying |δ| 6 δ0, where δ0 is known to be a positive real number. Obviously, the

uncertainty in this system can be represented by norm-bounded uncertainty.

Consider δ0 = 0.3. The above system matrices can be put into the form (4) with single block

uncertainty and

H1 =

[
0

10

]
, H2 = 0, E = [0 0.03]

Use the results in Theorems 2 and 3, the optimal robust one-step ahead predictor (setting D̂ = 0)

based on the Riccati equation approach and the LMI approach can be obtained. Theorem 3 also allows

us to compute the optimal filter (with D̂ 6= 0). A performance comparison of the optimal one-step ahead

predictors and the optimal filter is given in Table 1.
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Table 1 Performance of robust predictor and filter for the norm-bounded uncertainty characterization

δ = −0.3 δ = 0 δ = 0.3 bound

Robust filter of [14] 64.0 61.4 64.4 98.7

One-step ahead predictor by Theorem 2 52.8 51.1 54.4 69.2

One-step ahead predictor by Theorem 3 49.3 52.2 65.9 66.9

Optimal filter by Theorem 3 0.85 0.77 0.90 1.23

As expected, the optimal robust filter gives a much better performance than the optimal robust

one-step ahead predictor.

Next, consider the discrete-time system in the form of (1)∼(3) with [17]

A =

[
0.9 0.1 + 0.06α

0.01 + 0.05β 0.9

]
, B =

[
1 0 0

0 1 0

]

C = [1 0], D = [0 0 1.414], L = [1 1]

where |α| 6 1 and |β| 6 1. This is a two-block structured uncertainty which can be described by a four-

vertex ploytope. The value of the H2 guaranteed cost based upon the method in [12] (see also Theorem 3)

is 44.0039. To make a fair comparison, we also adopt a one-step ahead predictor by letting D̂ = 0. Using

Theorem 5 and the fminsearch in Remark 9, the optimal scaling parameters are obtained as λ1 = −0.9842

and λ2 = −0.9747 with the initial value [λ1, λ2] = [−0.5,−0.5]. The optimal H2 guaranteed cost is 19.4682

with the corresponding predictor

Â =

[
0.0705 0.0263

1.2779 0.5492

]
, B̂ =

[
0.9114

−0.9972

]
, Ĉ = [1.2885 0.2382]

Further, starting from the above predictor and using the iterative algorithm in Section 4, a much less

conservative minimum bound of 15.9759 can be obtained and the predictor is given by

Â =

[
0.0710 0.0262

1.2764 0.5496

]
, B̂ =

[
0.9110

−0.9960

]
, Ĉ = [1.2852 0.2433]

The above iteration only takes two steps to converge. The actual performance of the resultant predictor

is given in Fig. 1 which verifies that the cost for any admissible uncertainty is below the derived upper

bound.

Fig. 1 Actual cost of the filter for various uncertain parameters α and β
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6 Conclusion

This paper has revisited the robust H2 estimation of discrete-time linear uncertain systems with

both the norm-bounded uncertainty and the polytopic uncertainty. We have provided an overview on

the development in this field in the past decades. In particular, the Riccati equation approach has been

presented for the finite horizon case and the problem of optimizing the covariance matrix of estimation error

which is non-recursive has been addressed. The LMI approach has been applied for the design of robust

estimator in the infinite horizon case. We have demonstrated how slack variables can be incorporated to

give a less conservative design. At this stage, efforts are being made on new techniques which are able to

greatly reduce the design conservatism by using non-traditional methods such as applying non-quadratic

Lyapunov functions.
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