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New Results on Global Synchronization of Chua′s Circuit1)
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Abstract Some new results on global exponential synchronization and global synchronization for
Chua′s circuit are derived by means of Lyapunov functions and some other mathematic methods,
which improve the existing results in the literatures. A strict and complete proof of the result is also
given as a complement to the relevant literature where the proof was incomplete. The paper offers
some new approaches for studying chaos synchronization for Chua′s circuit.
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1 Introduction

Since Pecora and Carroll in U.S. Navy Laboratory firstly realized synchronization of chaotic system

by electronic circuit in 1990[1], the theories and applications of chaos control and synchronization have

attracted considerable interests[2∼23]. A great deal of papers concerning chaos have emerged. Because

chaotic communication possesses many advantages, such as high security, large dynamical storage

capacity, low power consumption, low observability, low cost, etc, it is a new promising research subject

in communication and control engineering.

The strange attractor of Chua′s circuit is different from the attractors of quadratic systems such

as Lorenz system, Chen system, Rössler system, Lü system and unified system[22,23]. It is the simplest

piecewise-linear chaotic attractor which is firstly realized by electronic circuit in laboratory and it

displays abundant dynamical behaviors. Naturally, more and more researchers have devoted to this

system, such as [19] and [7,10,11,12,20,21].

This paper obtains some new results on global exponential synchronization and global synchro-

nization for Chua′s circuit, using Lyapunov functions and some other mathematic methods. It also

improves and generalizes the results of [12,20,21] as corollaries. Furthermore, a strict and complete

proof to the result of [16] where the proof was incomplete is given. We aim to offer some new approaches

for studying chaos synchronization for Chua′s circuit.

2 Equations for Chua′s circuit and the existed results

Consider the differential equation for Chua′s circuit as follows.






ẋ = p(−x + y − f(x))

ẏ = x − y + z

ż = −qy

(1)

where f(x) = bx+ 1
2(a− b)(|x+E|− |x−E|), and p > 0, q > 0, a < b < 0, 0 < E < +∞ are constants.

When p = 10.0, q = 14.87, a = −1.27, b = −0.68, E = 1, it is the chaotic attractor of Chua′s circuit in

[16,p82].

Applying two mutually coupled Chua′s circuits to chaos synchronization investigation, we obtain

the following differential equations for the transmitter and receiver circuits, respectively.

drive :







ẋd = p(yd − xd − f(xd)) + δx(xr − xd)

ẏd = xd − yd + zd + δy(yr − yd)

ż = −qyd + δz(zr − zd)

(2)

1) Supported by National Natural Science Foundation of P. R. China (60274007,60474011) and Ph. D. Programs
Foundation of Ministry of Education of P. R. China (20010487005)
Received September 2, 2003; in revised form June 23, 2004

Copyright c© 2005 by Editorial Office of Acta Automatica Sinica. All rights reserved.



No. 2 LIAO Xiao-Xin et al.: New Results on Global Synchronization of Chua′s Circuit 321

response :







ẋr = p(yr − xr − f(xr)) + δx(xd − xr)

ẏr = xr − yr + zr + δy(yd − yr)

żr = −qyr + δz(zd − zr)

(3)

where δx, δy , δz are feedback constants.

[10,11] obtained the following results.

Theorem A. If there exist constants δ1 < δ2, such that for δx, δy, δz ∈ (δ1, δ2), matrices

(

−p − pλ − 2δx p 0

1 −1 − 2δy 1

0 −1 −2δz

)

are all Hurwitz matrices when λ = a, λ = b and if the initial conditions locate in the same attraction

domain, then for all δx, δy, δz ∈ (δ1, δ2), the submanifold xd = xr, yd = yr, zd = zr is stable in the phase

space {xd, yd, zd, xr, yr, zr} ∈ R6.

[12] oppugned the above result. We still think even if the above theorem can be strictly demon-

strated by other methods, it is difficult to confirm infinite matrices are Hurwitz matrices. Secondly,

this result is inconvenient in practice since it can not give any message about the attraction domain.

[16] improved the above theorem. If one lets δx = δy = δz = 0 in transmitter system (2) and only

considers the case δ2
x + δ2

y + δ2
z 6= 0 in receiver system (3), a fairly common result can be derived.

Theorem B. If pa + δx > 0, δy > 0, δz > 0, then systems (2) and (3) globally synchronize.

But we cannot confirm that the conclusion is true from the proof when δy = 0, δz = 0, pa+δx = 0.

In fact, we can not demonstrate it even if we use LaSalle invariant principle. Hence, [20,21] derived the

following result under stronger conditions.

Theorem C. Suppose δy = δz = 0. If pa+δx > 0 then the submanifold {xd, yd, zd, xr, yr, zr|xd =

xr, yd = yr, zd = zr} of systems (2) and (3) in R6 globally synchronizes, i.e. the trivial solution of the

following error dynamical system







ėx = pey − pex − p[f(xd) − f(xr)] − δxex

ėy = ex − ey + ez

ėz = −qey

(4)

is asymptotically stable (where ex = xd − xr, ey = yd − yr, ez = zd − zr).

This paper proves that systems (2) and (3) are globally exponentially synchronized under the same

hypothesis as [20,21]. Moreover, a new theorem on global exponential synchronization with different

conditions in [20,21] is derived. Lastly, a strict and complete proof to the result of [16] where the proof

was incomplete is given. Some new approaches for studying chaos synchronization of Chua′s circuit

are offered.

3 Results of global exponential synchronization

We firstly give the definition of global exponential synchronization of systems (2) and (3).

Definition 1. It is said that two chaotic circuits (2) and (3) are globally exponentially synchro-

nized if for any given initial values xd(0), yd(0), zd(0) ∈ R3, and corresponding xr(0), yr(0), zr(0) ∈ R3

the trivial solution of system (4) is globally exponentially stable, i.e.,

e
2
x(t) + e

2
y(t) + e

2
z(t) 6 ke

−αt

where α > 0 is a constant, k is a constant depending on initial values ex(0), ey(0), ez(0).

Theorem 1. If δx + pa > 0, δy = 0, δz = 0, then the trivial solution of system (4) is globally

exponentially stable, which implies systems (2) and (3) are globally exponentially synchronized.

Proof. Because the matrix diag(q, pq, p) is positive definite, we can select 0 < ε << 1, such that

W :=

(

q 0 0

0 pq − ε
2

0 − ε
2 p

)
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is also positive definite. Construct a positive definite and radially unbounded Lyapunov function, i.e.,

V (e) :=

(

ex

ey

ez

)(

q 0 0

0 pq − ε
2

0 − ε
2 p

)(

ex

ey

ez

)

(5)

Computing the time derivative of V (e) along the solution of system (4), we have

dV (e)

dt

∣

∣

∣

(4)
=2qexėx + 2pqey ėy + 2pezėz − εėyez − εeyėz 6

− 2(pa + δx)qe2
x − 2pqe

2
x + 4pqe

2
x − 2pqe

2
y − εexez + εexez − εe

2
z + εqe

2
y =

(

ex

ey

ez

)





−2(pa + δx)q − 2pq 2pq − ε
2

2pq −2pq + εq ε
2

− ε
2

ε
2 −ε





(

ex

ey

ez

)

:= e
T
Ωe (6)

∆1 := −2(pa + δx)q − 2pq < 0

∆2 := [−2(pa + δx)q − 2pa](−2pq + εq) − 4p
2
q
2 =

4pq
2(pa + δx) − 2εq

2(pa + δx) − 2εpq
2

> 0, when 0 < ε << 1

∆3 := detΩ = −4εpq
2(pa + δx) + o(ε2) < 0, when 0 < ε << 1

Thereby, Ω is negative definite.

In conclusion, we can choose 0 < ε << 1, such that W is positive definite and Ω is negative

definite.

Consequently, we have

dV

dt

∣

∣

∣

(4)
6 λmax(Ω)‖e‖2

6
λmax(Ω)

λmax(W )
V (7)

λmin(W )‖e‖2
6 V (e(t)) 6 V (e(0)) exp

(

λmax(Ω)

λmax(W )
t

)

Further more, we have estimation formula

‖e‖2
6

V (e(t))

λmin(W )
6

V (e(0))

λmin(W )
exp
(

λmax(Ω)

λmax(W )
t

)

(8)

therefore, the result is true. This completes the proof of Theorem 1. �

Remark 1. Theorem 1 improves the corresponding results in [20,21], and generalizes synchro-

nization to global exponential synchronization.

We give another new result of global exponential synchronization in succession. The conditions

are different from those in [7,20,21].

Consider the following errors dynamical system






ėx = pey − pex − p[f(xd) − f(xr)] − δxex

ėy = ex − ey + ez − δyey

ėz = −qey

(9)

Theorem 2. If δ2
x + δ2

y + δ2
z = 0 in system (2), and δx, δy in system (3) satisfy

−pq < (pa + δx)q < 0, δy >
−pq(pa + δx)

pa + δx + p

then the zero solution of system (9) is globally exponentially stable. Thereby, systems (2) and (3) are

globally exponentially synchronized.

Proof. We still use the Lyapunov function (5). Computing the time derivative of V (e) along the

solution of system (9), we have

dV

dt

∣

∣

∣

(9)
=

(

ex

ey

ez

)





−2(pa + δx)q − 2pq 2pq − ε
2

2pq −2pq + εq − 2δy
ε
2

− ε
2

ε
2 −ε





(

ex

ey

ez

)

:= e
T
Ω̃e
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because

∆̂1 := −2(pa + δx)q − 2pq < 0

∆̂2 := [−2(pa + δx)q − 2pq][−2(pq + δy) + εq] − 4p
2
q
2 =

4pq
2(pa + δx) + 4qδy(pa + δx + p) + o(ε) > 0, when δy >

−pq(pa + δx)

pa + δx + p
, 0 < ε << 1

∆̂3 := detΩ̃ = −4ε[pq
2(pa + δx) + δy(pa + δx + p)q] + o(ε2) < 0,

when δy >
−pq(pa + δx)

pa + δx + p
, 0 < ε << 1

Ω̃ is negative definite. Accordingly, we have

dV

dt

∣

∣

∣

(9)
6 λmax(Ω̃)‖e‖2

6
λmax(Ω̃)

λmax(W )
V

λmin(W )‖e‖2
6 V (e(t)) 6 V (e(0)) exp

(

λmax(Ω̃)

λmax(W )
t

)

Further more, we have estimation formula

‖e‖2
6

V (e(t))

λmin(W )
6

V (e(0))

λmin(W )
exp
(

λmax(Ω̃)

λmax(W )
t

)

(10)

therefore, the result of Theorem 2 is true. This completes the proof of Theorem 2. �

Remark 2. Theorem 2 is a new result which is different from the results in [10,11,16,20,21].

4 Result of global synchronization

Definition 2. If the trivial solution of system (4) is globally asymptotically stable, then systems

(2) and (3) are said to be globally synchronized.

To consummate the result that could not be strictly proved in [16], we use the following equality.

According to the property of f(x) and median value theorem, we have the following evident equalities.

f(xd) − f(xr) :=






a(xd − xr), when |xd| 6 E and |xr| 6 E, or xd 6 −E and xd 6 −E

b(xd − xr), when xd > E and xr > E

k(xd, xr)(xd − xr), xd, xr are not in the same interval of (−∞,−E), (−E,E) or (E,+∞)

where k(xd, xr) ∈ (a, b) is a constant depending on xd, xr.

Theorem 3. If pa + δx > 0 (δy = δz = 0), then the trivial solution of system (4) is at least

globally asymptotically stable, thereby chaotic circuits (2) and (3) are at least globally synchronized.

Proof. First step. Suppose pa+ δx > 0, and construct a positive definite and radially unbounded

Lyapunov function

V :=
1

2
[qe2

x + pqe
2
y + pe

2
z] (11)

Taking the time derivative of V along the solution of system (4), we get

dV

dt

∣

∣

∣

(4)
= qexėx + pqey ėy + pezėz 6

qex[−p − k(xd, xr)p − δx]ex + pqeyex + pqeyex + pqey(ex − ey + ez) − pqeyez =

− [k(xd, xr)p + δx]qe2
x − pq(ex − ey)2 6

− (pa + δx)qe2
x − pq(ex − ey)2 (12)

From (12), it is obvious that dV
dt

∣

∣

∣

(4)
is negative definite about ex, ey, but is negative semi-definite about

ex, ey, ez. Therefore, we know ex → 0, ey → 0 by stability theory of partial components[24], but can not

ensure ez → 0. It is evident that the trivial solution of system (4) is stable for all variables ex, ey , ez
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according to (12). However, we can easily prove ez → 0 (t → ∞) by LaSalle invariant principle and

(12).

Second step. Assume pa + δx = 0. When at least one of xd, and xr does not belong to interval

[−E, E], similar to the method of the first step, we still choose Lyapunov function (11), and have

V =
1

2
[qe2

x + pqe
2
y + pe

2
z]

d

dt

∣

∣

∣

(4)
6 −(pk(xd, xr) + δx)qe2

x − pq(ex − ey)2 < 0, when e
2
x + e

2
y 6= 0

This implies ex(t) → 0, ey(t) → 0 (t − ∞), under the hypothesis that at least one of xd and xr does

not belong to interval [−E, E].

Now, we prove ez(t) → 0 (t → ∞), under the hypothesis that at least one of xd and xr does not

belong to interval [−E, E].

We take −p[f(xd) − f(xr)] − δxex as a nonlinear perturbation of the first equation in error dy-

namical system (4).

Consider the linear part of system (4)







ėx = pey − pex

ėy = ex − ey + ez

ėz = −qey

(13)

The system matrix of linear system (13) is

B :=

(

−p p 0

1 −1 1

0 −q 0

)

and its characteristic equation is

det(λE − B) = λ
3 + (p + 1)λ2 + qλ + pq = 0 (14)

According to the Hurwitz criterion in [25], the sufficient and necessary condition that the zeros

of polynomial (14) have only negative real parts is

q > 0, 0 < pq < (p + 1)q = pq + q (15)

Since p > 0, q > 0, (15) is obviously satisfied, thereby, matrix B is a Hurwitz matrix.

So, there exist constants M > 1 and α > 0, and we have estimation formula

‖eB(t−τ)‖ 6 Me
−α(t−τ)

, t > τ

Applying the method of variation of parameter with initial conditions (ex(0), ey(0), ez(0) ∈ R3)

the common solution of (4) can be expressed as

(

ex(t)

ey(t)

ez(t)

)

= e
Bt

(

ex(0)

ey(0)

ez(0)

)

+

∫ t

0

e
B(t−τ)

(

−pkex(τ ) − δxex(τ )

0

0

)

dτ (16)

Hence, we have

∥

∥

∥

∥

∥

ex(t)

ey(t)

ez(t)

∥

∥

∥

∥

∥

6 Me
−αt

∥

∥

∥

∥

∥

ex(0)

ey(0)

ez(0)

∥

∥

∥

∥

∥

+ M

∫ t

0

e
−α(t−τ)|pa + δx| · |ex(τ )|dτ =

Me
−αt

∥

∥

∥

∥

∥

ex(0)

ey(0)

ez(0)

∥

∥

∥

∥

∥

+ Me
−αt

∫ t

0

e
ατ |pa + δx| · |ex(τ )|dτ (17)
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The first term of (17) tends to be zero when t tends to infinity, i.e., Me−αt

∥

∥

∥

∥

∥

ex(0)

ey(0)

ez(0)

∥

∥

∥

∥

∥

→ 0(t → +∞).

By means of L′Hospital rule and ex(t) → 0 (t → ∞), we have

lim
t→∞

M
∫ t

0
eατ‖pa + δx‖ · ‖ex(τ )‖dτ

eατ
= lim

t→∞

M‖pa + δx‖ · |ex(t)|

α
= 0

Therefore, ex(t), ey(t), ez(t) → 0 (t → ∞), hence the trivial solution of system (4) is globally asymp-

totically stable, i.e., systems (2) and (3) globally synchronize.

If xd, xz ∈ [−E, E], then system (4) is reduced to linear system:







ėx = pey − pex − (pa + δx)ex = pey − pex

ėy = ex − ey + ez

ėz = −qey

that is, system (13). We have proved the coefficient matrix of system (13) is Hurwitz matrix. Therefore,

ex(t), ey(t), ez(t) → 0 (t → ∞). �

In conclusion, the trivial solution of system (4) is globally asymptotically stable, hence systems

(2) and (3) globally synchronize. This completes the proof of the theorem.

Remark 3. Theorem3 gives a strict and perfect proof to the result in [16] where the proof was

incomplete, and improve the results of [20,21].

5 Conclusion

For Chua′s chaotic circuit, we can always realize chaos synchronization via the simplest linear

feedback control. In this paper, we have proposed the concept of global exponential synchronization,

generalized the exist result, and given strict and perfect proof in theory. Because the conditions and the

results are expressed with mathematic analytic formulae, we do not give numerical simulation example.
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