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Abstract This paper considers the tracking performance problem of a model reference robust
control (MRRC) for plants with relative degree greater than one. A new algorithm is proposed based
on the earlier research. It is shown that by applying a special transformation to the tracking system,
the L∞ bound of the tracking error can be achieved even when the high frequency gain is unknown,
and both the tracking performance and the control effort can be improved significantly. Furthermore,
the strictly positive real (SPR) condition, which is an essential assumption of the earlier design, can
be removed.
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1 Introduction

Model reference robust control was introduced by [1] as a new means of I/O based controller

design for linear time invariant (LTI) plants with nonlinear input disturbance and has been extended

to MIMO, non-minimum phase plants and the case in the presence of unmodeled dynamics[2∼5]. For

plants with relative degree greater than one (n∗ > 1), the method can be considered as an extension

of the backstepping design[6], where the final control signal is obtained through a series of fictitious

control signals designed recursively. To overcome the influence of the nonlinear input disturbance, the

update law is abandoned. Instead, the concept of bounding function is introduced in the control law

design with the assumption that the parameters of the plant belong to a known compact set.

It is worth mentioning that in the area of model following with respect to SISO LTI plants,

adaptive backstepping design algorithm has drawn a lot of attention recently due to its strong transient

performance properties available in both L2 and L[7∼9]
∞ . The extension of the algorithm to plants with

unmodeled dynamics and external disturbance shows that the tracking error is proportional to the

size of the perturbations[10]. However, since in some missile control and guidance problems, a higher

tracking precision is needed even with the existence of an external disturbance, this, of course, restricts

the application of the algorithm.

We note that theoretically, a higher tracking precision can be achieved by using the MRRC. From

a practical point of view, however, the tracking performance of the MRRC may be unacceptable. In

fact, as the authors themselves pointed out, the control signal may change rapidly and have large

amplitude by using their scheme if a higher tracking precision is needed. This situation is illustrated in

the simulation results shown in the following figures, where we chose the same plant as that in example

2 of [1] and, to simplify the analysis, the model was chosen as

M(s) = 2/(s2 + 6s + 5) = 2/(s + 1)(s + 5) (1)

Let L(s) = s + 5; hence M(s)L(s) = 2/(s + 1) is obviously an SPR function. In the simulation,

the Matlab/Simulink toolbox was used. The input signal of the system, say, r was a square wave of

amplitude 1 with frequency 1rad/sec. We chose the design parameters ε1 = ε2 = 5 and ε1 = ε2 = 0.5,

respectively, where ε1 and ε2 were used in [1] to control the tracking precision, i.e., the smaller the values

of ε1 and ε2, the higher the tracking precision. Fig. 1 shows that the tracking error is, in general, large,

while from Figures 3 and 4, it is clear that the amplitude of the control signal is high due to the smaller

ε1 and ε2 though the tracking precision is better. It also should be pointed out that the simulation
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of example 2 of [1] was incorrect since it can be checked that M(s)L(s) is not an SPR function when

L(s) = s + 10. Therefore, it seems that the example would not be suitable to show the effectiveness of

the algorithm.

Fig. 1 Tracking error Fig. 2 Control signal

Fig. 3 Tracking error Fig. 4 Control signal

Given the motivation above, the objective of this paper is to improve the tracking performance of

the MRRC for the case of n∗ > 1 while maintaining a reasonable control effort. We will first introduce a

special transformation to the tracking system and then a new Lyapunov function as well as a modified

design algorithm will be given. We will show that by using the new algorithm, both the tracking

performance and the control effort can be improved significantly. Furthermore, the SPR condition,

which is an essential assumption of the earlier design, can be removed.

2 System and assumptions

The system to be controlled is

y = Gp(s)[u + d] = kp(np(s)/dp(s))[u + d] (2)

where y and u are the system output and input, respectively, Gp(s) is the plant transfer function with

dp(s) and np(s) being polynomials of degrees n and m, respectively, and d denotes a disturbance or

uncertainty. In this paper, the reference model is given by

y
M

= M(s)[r] = kM
1

dM (s)
[r], kM > 0 (3)

where dM (s) is a monic Hurwitz polynomial with deg(dM (s)) = n − m := n∗ and r is any piecewise

continuous and uniformly bounded reference signal.

For the controlled system, the following assumptions are made:

(A1) The parameters of Gp are unknown but belong to a known compact set; the order n, the

relative degree n∗, and the sign of kp are known and constant, and Gp is of minimum phase. Without

loss of generality, it is assumed that kp > 0. (A2) The lumped disturbance and uncertainty term d(y, t)

is bounded by a known continuous function ρ(y, t) such that for all (y, t) ∈ R × R+, |d(y, t)| 6 ρ(y, t),

∀t > 0, where the bounding function ρ(y, t) is assumed to be continuous, uniformly bounded with
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respect to t, and locally uniformly bounded with respect to the system output y. The uncertainty

d(y, t) is not necessarily continuous but, if it may be discontinuous, the existence of the solution of y is

assumed.

Remark 1. Assumption (A2) admits nonlinear functions and unmodeled dynamics associated

with the system output y.

Define the control signal

u = θ̂
T
ω + u

R
(4)

where u
R

is the nonlinear control to be designed and the constant vector θ̂ ∈ R2n and the vector

ω ∈ R2n will be defined below. Using the conventional technique of model reference adaptive control

(MRAC), the tracking error e := y − y
M

can be expressed as

e = M(s)κ∗[θ̃
T
ω + df + u

R
] + ε (5)

where ε denotes a bounded, differentiable and exponentially decaying real function that represents

non-zero initial conditions for all internal states of the tracking system,

θ̃ := θ̂ − θ
∗, ω := [νT

1 , y, νT
2 , r]T

θ̂ := [θ̂
T

1 , θ̂0, θ̂
T

2 , k̂]T, θ
∗ := [(θ∗

1)
T, θ∗

0 , (θ∗

2)
T, k∗]T

κ∗ := kp/kM = 1k∗, df := (1 − d1(s))[d], d1(s) := θ̂
T

1 adj(sI − Λ)b (6)

where θ∗ is the matching vector for which the perfect tracking can be achieved[11], θ̂ in the MRRC is

an estimate of θ∗, and the input/output filters are defined, respectively, as

ν̇1 = Λν1 + bu, ν1(0) = 0, ν̇2 = Λν2 + by, ν2(0) = 0; Λ ∈ R(n−1)×(n−1), b ∈ Rn−1 (7)

where Λ is a matrix such that deg(sI − Λ) is a Hurwitz polynomial and (Λ, b) is a controllable pair.

Write (5) in the following form for the case of n∗ > 1:

e = M(s)L(s)κ∗[θ̃
T
ω̄ + dL + L−1(s)[u

R
]] (8)

where

L(s) := sn∗
−1 + α1s

n∗
−2 + · · · + αn∗−1 (9)

and is assumed to be a Hurwitz polynomial such that M(s)L(s) has relative degree one and, ω̄ and dL

are defined, respectively, as

ω̄ := L−1(s)[ω], dL := L−1(s)[df ] (10)

Hereafter, similar to [1], we do not consider ε since it does not affect the stability of the MRRC system

and can only make the control law design a little bit complicated.

3 Improvement of the tracking performance

In the following, we show that by transforming (8) into a first-order differential equation, we can

modify the control law of the previous research, so that the transient performance and the control effort

can be improved significantly. To proceed, we introduce the following lemma.

Lemma 1.[12] Suppose η = G(s)[v] = kg(β(s)/α(s))[v](kg 6= 0) is a strictly proper system with

α(s) and β(s) being coprime and monic polynomials. If the relative degree of G(s) is n∗, then there must

exist a monic polynomial ξ(s) with deg(ξ(s)) = n∗ and a polynomial ϕ(s) with deg(ϕ(s)) <deg(β(s)),

such that

α(s) = ξ(s)β(s) + ϕ(s) (11)

η = kg(1/ξ(s))[v] − (ϕ(s)/ξ(s)β(s))[η] (12)

Proof. See [12].

By applying Lemma 1 to (8), it follows that

ė = (1/(s + λ))kp[θ̃
T
ω̄ + dL − ϕ(s)

kpL(s)
[e] + L−1(s)[u

R
]] (13)
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where ξ(s) = s+λ since M(s)L(s) is of relative degree one, and the polynomial ϕ(s) satisfies det(ϕ(s)) <

deg(L(s)) and can be obtained a priori. Hence,

ė = −λe + kp(θ̃
T
ω̄ + dL − ϕ(s)

kpL(s)
[e] + L−1(s)[u

R
]) (14)

We are interested in the sign of λ in the above equation. In fact, we have the following lemma.

Lemma 2. Let L(s) be given by (9) and dM in (3) be defined as

dM (s) = sn∗

+ β1s
n∗

−1 + · · · + βn∗ (15)

Then

λ > 0, if β1 > α1; λ 6 0, if β1 6 α1 (16)

where α1 can be found in (9). In particular, if M(s)L(s) is an SPR function, then λ > 0.

Proof. From (9), (15) and taking (11) into consideration, dM (s) can be written as dM (s) =

(s + λ)L(s) + ϕ(s). It is easy to check that λ = β1 − α1 and therefore, (16) follows. Furthermore, it

can be shown, after some straightforward calculations, that

lim
w→∞

w2Re[M(jw)L(jw)] = β1 − α1 = λ (17)

Hence, if M(s)L(s) is an SPR function, from [13, Theorem 2.1], we have λ > 0. �

To design the control signal, let z1 := L−1(s)[u
R

]. The controllable canonical form of z1 is

ż1 = z2, żi = zi+1, i = 2, · · · , n∗ − 2

żn∗−1 = −α1zn∗−1 − α2zn∗−2 − · · · − αn∗−1z1 + u
R

(18)

Further, we consider the following Lyapunov function

V =
1

2
e2 +

1

2
kp

n∗
−1∑

i=1

(zi − vi)
2 (19)

where v′

i are the control signals to be designed in a recursive manner. We introduce the modified version

of Theorem 2 of [1] in the following theorem.

Theorem 1. Let the MRRC system given by (5) satisfy assumptions (A1), (A2). Let the signals

v1, · · · , vn∗−1, of (19) and the control signal u
R

= vn∗ be defined as follows.

v1 := −σe − µ1|µ1|τ1

|µ|τ1+1 + ετ1+1
1

g1

v2 = u
R

:= −γ(z1 − v1) − e + α1z1 − µ2|µ2|τ2

|µ2|τ2+1 + ετ2+1
2

g2, if n∗ = 2

v2 := −γ(z1 − v1) − e − µ2|µ2|τ2

|µ2|τ2+1 + ετ2+1
2

g2

vi := −γ(zi−1 − vi−1) − (zi−2 − vi−2) − µi|µi|τi

|µi|τi+1 + ε
τi+1

i

gi, i = 3, · · · , n∗ − 1

u
R

= vn∗ = −γ(zn∗−1 − vn∗−1) − (zn∗−2 − vn∗−2) + (α1zn∗−1 + · · · + αn∗−1z1)−
µn∗ |µn∗ |τn∗

|µn∗ |τn∗+1 + ε
τn∗+1
n∗

gn∗ (20)

where τ1 > 0, ε1 > 0, τj > 0, εj > 0, σ > 0 and γ are design parameters,

γ > λ + kpσ := γ1 (21)

with kp is a lower bound of kp, and the bounding functions g1, gj and the functions µ1, µj are designed,

respectively, as follows:

g1 = BND(|θ̃T
ω̄ + dL − ϕ(s)

kpL(s)
[e]|), µ1 = eg1
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gi = BND(|v̇j−1|), µj = (zj−1 − vj−1)gj , j = 2, · · · , n∗ (22)

If the robust control is chosen as

u = θ̂
T
ω + u

R
, u

R
= vn∗ (23)

then, all the signals of the closed loop system are uniformly bounded and the following L∞ bound of

the tracking error is guaranteed:

|e| 6
√

2 exp(−2γ1t)V (0) + kpε/γ1, ∀t > 0 (24)

where ε :=
∑n∗

i=1 εi.

Remark 2. The bounding function of any signal f , say, BND(|f |) is a known, continuous,

nonnegative function that bounds the magnitude (or Euclidean norm) of f . Readers may refer to [1]

for detail about the definition.

The bounding function BND(|v̇j−1|) in the recursive design is well-defined by using (14), the

triangle inequality, the fact that the bounding functions, including ρ(y, t) and BND(dL(s)), are not

unique and can be chosen to be differentiable, and the relations listed below.

żi = siL−1(s)[u
R
], r̄(i) = siL−1(s)[r], ȳ(i) = siL−1(s)[y]

˙̄ν1 = Λν̄1 + b[θ̂
T
ω̄ + z1], ˙̄ν2 = Λν̄2 + b[ȳ] (25)

Remark 3. From the assumption (A1), both kp and an upper bound of ‖θ̃‖ can be obtained a

priori.

Remark 4. The signals v1, · · · , vn∗−1 are so-called fictitious control signals.

Remark 5. If ε′is are chosen to be time-varying and differentiable, the above results still hold.

In comparison to Theorem 2 of [1], the main feature of the modification is that by using Lemma

1, we can transform (8) into a first-order differential equation as shown in (14), which paves the way for

the introduction of the new Lyapunov function and the design parameters σ and γ. Since σ, γ as well as

γ1 are at designer′s disposal, the theorem states that the tracking error converges to a residual set that

is a decreasing function of γ1 and therefore, the tracking performance improvement can be achieved

with larger σ, γ as well as γ1. This is the main difference between our modification and the earlier

research. On the other hand, we note that (24) relaxes the limitation of kp in adaptive backstepping

control[8], where the L∞ bound is only available when kp is known exactly.

Another interesting feature of the modification is that the SPR assumption of M(s)L(s) can be

removed. In fact, if M(s)L(s) is not an SPR function, the method of [1] cannot be applied. Note that

by Lemma 2, a non-SPR function implies that we may have λ 6 0. However, by using the modification,

we can choose σ such that γ1 in (21) is greater than zero even with λ 6 0. The proof of the theorem

given below will show that γ1 > 0 is essential to guarantee the stability of the MRRC system.

Proof of Theorem 1. The time derivative of the Lyapunov function yields

V̇ = − λe2 + kp[(θ̃
T
ω̄ + dL − ϕ(s)

kpL(s)
[e])e + z1e] + kp

n∗
−1∑

i=1

(zi − vi)(żi − v̇i) =

− λe2 + kpe[(θ̃
T
ω̄ + dL − ϕ(s)

kpL(s)
[e]) + v1] + kp(z1 − v1)(e + v2 − v̇1)+

kp

n∗
−2∑

i=2

(zi − vi)[(zi−1 − vi−1) + vi+1 − v̇i] + kp(zn∗−1 − vn∗−1)[(zn∗−2 − vn∗−2)+

(−α1zn∗−1 − · · · − αn∗−1z1) + u
R

︸ ︷︷ ︸

żn∗
−1

−v̇n∗−1] (26)

where (14) and the following relation have been used

(zi − vi)(żi − v̇i) = (zi − vi)(vi+1 − v̇i) + (zi − vi)(zi+1 − vi+1) (27)
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Also, note that from (18), żi = zi+1. Replacing (20) in (26) it follows that

V̇ 6 −γ1e
2 − γkp

n∗
−1∑

i=1

(zi − vi)
2 + kp

n∗

∑

i=1

εi 6

− γ1e
2 − γ1kp

n∗
−1∑

i=1

(zi − vi)
2 + kp

n∗

∑

i=1

εi = −2γ1V + kpε, t > 0 (28)

where we have used (21) and the inequalities

− λe2 + kpe[(θ̃
T
ω̄ + dL − ϕ(s)

k − pL(s)
[e]) + v1] = −(λ + kpσ)e2 + kp[(θ̃

T
ω̄ + dL − ϕ(s)

kpL(s)
[e])e−

|µ1|τ1+2

|µ1|τ1+1 + ετ1+1
1

] 6 −(λ + kpσ)e2 + kp(|µ1| −
|µ1|τ1+2

|µ1|τ1+1 + ετ1+1
1

) 6 −γ1e
2 + kpε1 (29)

and

kp(zi−1 − vi−1)(−
µi|µi|τi

|µi|τi+1 + ετi+1
i

gi − v̇i−1) = kp[−(zi−1 − vi−1)v̇i−1 − µi|µi|τi

|µi|τi+1 + ετi+1
i

µi] 6

kp(|µi| −
|µi|τi+2

|µi|τi+1 + ετ−i+1
i

) 6 kpεi (30)

respectively, where the proof of the inequalities

kp(|µj | − |µj |τj+2

|µj |τj+1 + ε
τj+1

j

) 6 kpεj , j = 1, 2, · · · , n∗ (31)

in both (29) and (30) can be found in [1, p.2226].

The inequality (28) implies that

V 6 exp(−2γ1t)V (0) + kpε/2γ1, ∀t > 0 (32)

which, in view of (19), gives e2/2 6 exp(−2γ1t)V (0) + kpε/2γ1,∀t > 0, and therefore, (24) follows.

That is, a larger γ1 can improve the transient and steady-state performance of the tracking error.

To prove all the signals of the close-loop system are uniformly bounded, we note that (32) and

(19) imply that the tracking error e and (zi−vi) belong to L∞. The fact that ω̄ ∈ L∞ is thus proved by

noting that y = e+y
M

∈ L∞ and therefore, ν̄2 = L−1(s)(sI−Λ)−1b[y] and ν̄1 = L−1(s)(sI−Λ)−1b[u] =

L−1(s)(sI − Λ)−1bG−1
p (s)[y] ∈ L∞, where ω̄ is given by (10), and L−1(s)(sI − Λ)−1bG−1

p (s) is proper

and stable because Gp(s) is of minimum phase. Hence, by the same manner as in [1], it can be proved

that vi, zi, uR
∈ L∞. Finally, we need to prove that ω ∈ L∞. Since the reference signal r and the

output y belong to L∞, from (6), we only need to show that ν1 ∈ L∞. Taking into account (7) and

(4), we have

|ν̇1| = |Λν1 + bu| < |Λν1 + b(θ̂
T
ω + u

R
)| 6 c + c‖(ν1)t‖∞ + c‖ω‖ 6 c + c‖(ν1)t‖∞ (33)

where the norm ‖xt‖∞ := supτ6t |x(τ )|, c generically denotes a positive constant and the fact that

‖ω‖ 6 c + c‖(ν1)t‖∞ is used. The inequality (33) implies that ν1 is a regular signal [14, p.70]. Hence

by using Corollary 3.6.3 of [14], ω̄ ∈ L∞ implies that ν1 ∈ L∞. �

4 Simulation results

We chose the same plant, reference model and disturbance signal discussed in Section 1. The plant

of relative degree two is

Gp(s) = 1/(s2 + s + 1) (34)

The reference model is given by (1). L(s) = s + α1 = s + 5. Since M(s)L(s) = 2/(s + 1), i.e., there

is a pole/zero cancellation, from (11) and (13) it is easy to check that ϕ(s) = 0 and λ = 1. The

parameters of the input and output filters given by (7) are Λ = −10 and b = 1. The disturbance is
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d(y, t) = cos t + 0.5 cos y + y2 sin t, whose bounding function was chosen as ρ(y, t) = 2 + y2. Note that

the control law (20) holds only when ε = 0 as we mentioned at the end of the section 2. If ε 6= 0, similar

to (5), we can rewrite (14) as follows.

ė = −λe + kp(θ̃
T
ω̄ + dL − (ϕ(s)/(kpL(s)))[e] + L−1(s)[u

R
]) + ε̄ (35)

where ε̄ has the same definition as ε and is not available for measurement also; hence, in view of (21)

and (35), (22) has to be slightly modified as follows.

|v̇1| =
∣
∣
∣
∂v1

∂e
ė +

∂v1

∂g1
ġ1

∣
∣
∣ 6 g2 + cε̄2 (36)

where the triangle inequality is used to separate ε̄, c is any positive constant, and g2 is the bounding

function of |v̇1| except ε̄. Note that cε̄2 decays exponentially and therefore does not affect the stability

of the closed-loop system. To obtain u
R

= v2, let τ1 = 1, τ2 = 0, ε1 = ε2 = 5, σ = 30 and γ = 31.

Then from (20) and taking into account (35) and (36), we can get v1 and u
R

= v2, respectively, where

we chose

g1 = BND(|±̃θ
T
ω̄ + dL|) = ‖θ̃‖

√

r̄2 + ν̄2
1 + ν̄2

1 + ȳ2 + 0.1 + (1/L(s))[ρ(y, t)] (37)

We let θ̂ = 0, BND(k̃) = 4 and BND(θ̃0) =BND(θ̃1) =BND(θ̃2) = 0.7. Hence, ‖θ̃‖ =
√

17.47. We chose

kp = 0.5. Fig. 5 demonstrates the perfect transient performance when the initial condition is non-zero.

In addition, to avoid peaking phenomenon of the control signal at the beginning of the simulation, the

initialization technique of [7, p.751] was used and has improved the control effort significantly.

Fig. 5 Tracking error Fig. 6 Control signal

5 Conclusion

In this paper, a new model reference robust controller design algorithm has been proposed for

plants with relative degree greater than one. The property of the algorithm is that both the transient

performance and the control effort can be improved significantly. This is achieved by transforming the

tracking system into a first-order system and by using a specially chosen Lyapunov function, which

allows the introduction of some new design parameters. Furthermore, the strictly positive real (SPR)

condition can be removed.
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