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Abstract An iterative learning control algorithm based on shifted Legendre orthogonal polynomi-
als is proposed to address the terminal control problem of linear time-varying systems. First, the
method parameterizes a linear time-varying system by using shifted Legendre polynomials approxi-
mation. Then, an approximated model for the linear time-varying system is deduced by employing
the orthogonality relations and boundary values of shifted Legendre polynomials. Based on the
model, the shifted Legendre polynomials coefficients of control function are iteratively adjusted by
an optimal iterative learning law derived. The algorithm presented can avoid solving the state
transfer matrix of linear time-varying systems. Simulation results illustrate the effectiveness of the
proposed method.
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1 Introduction

Systems requiring change of states or outputs in a finite time constitute a special class of control

problems and are often called the terminal (or point-to-point) control problems[1]. The precise terminal

control finds increasing applications in large space apparatus, robotic manipulator and small scale

apparatus like computer disk drives. When a system executes a given task repeatedly, this repeatability

can be utilized to improve the system control performance by the iterative learning control method[2].

Learning method has been applied to terminal control problems successfully in [3∼7]. We refer to

this special learning scheme as terminal iterative learning control[7]. The key technique of the method

is to represent the control function as a linear combination of a pre-determined piecewise continuous

functional basis and then to update the coefficient vector based on the terminal output error. However,

a drawback of the existing algorithm is that the error convergence checking condition contains the

system state transfer matrix. It is difficult to obtain the precise solution to the state transfer matrix

for linear time-varying systems[8]. As a consequence, it is not easy to check a priori whether the linear

time-varying system satisfies the convergence condition so that the existing method can apply.

In this paper, we develop an iterative learning control algorithm based on shifted Legendre or-

thogonal polynomials for the application to the terminal control of linear time-varying systems. The

approach starts using finite shifted Legendre polynomials expansion to parameterize a linear time-

varying system. Then, the dynamical equation of the plant is reduced to a set of linear algebraic

equations by employing the orthogonality relations and boundary values of shifted Legendre polyno-

mials. The control problem becomes one of finding the shifted Legendre polynomials coefficients of

control function, which are iteratively adjusted by learning algorithm. The algorithm is derived by

minimizing the quadratic performance index in the form of algebraic forms via shifted Legendre poly-

nomials expansion. Compared to the existing method, the method presented can avoid solving the

state transfer matrix of linear time-varying systems. Simulation results show the effectiveness of the

proposed scheme.

2 Brief review on shifted Legendre polynomials

The well-known Legendre differential equation is described by

[(1 − z2)P ′

i (z)]′ + i(i + 1)P ′

i (z) = 0, − 6 z 6 1, i = 0, 1, · · · ,∞ (1)
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First we try to transform the independent variable into values between 0 and T , and let

z = (2t/T ) − 1, t ∈ [0, T ] (2)

The shifted Legendre polynomials in t satisfy the following recurrence relation











P0(t) = 1

P1(t) = 2(t/T ) − 1

(i + 1)Pi+1(t) = (2i + 1)P1(t)Pi(t) − iPi−1(t), i > 1

(3)

We mention the following properties, which are essential in the subsequent development

a) Orthogonality relations

∫ T

0

Pm(t)Pn(t)dt =

{

0, m 6= n

T/(2n + 1), m = n
(4)

b) Boundary values

Pi(T ) = 1 (5)

An arbitrary function f(t), which is absolutely integrable in t ∈ [0, T ] can be expressed in terms

of shifted Legendre polynomials

f(t) =

∞
∑

i=0

fiPi(t) (6)

In general, we may obtain an approximate expression of f(t), by truncating the series (6) up to m

terms (m is determined by the approximation accuracy requirement)

f(t) ≈

m−1
∑

i=0

fiPi(t) = f
T
Dm(t) (7)

where f is called the shifted Legendre polynomials coefficient vector, and Dm(t) is the shifted Legendre

polynomials vector. The two vectors are defined as

f = [f0 f1 f2 · · · fm−1]
T, Dm(t) = [P0(t) P1(t) P2(t) · · ·Pm−1(t)]

T

The orthogonal coefficients can be computed by

fi =

∫ T

0

f(t)Pi(t)dt/

∫ T

0

Pi(t)
2dt (8)

which shows (7) is a least-squares approximation.

3 Terminal control problem for linear time-varying systems

Consider the repeatable linear time-varying system described by

{

ẋk(t) = A(t)xk(t) + B(t)uk(t)

yk(t) = C(t)xk(t)
, 0 6 t 6 T (9)

where subscript k indicates the system repetition number; x ∈ Rn×1, u ∈ Rl×1 and y ∈ Rr×1 are state,

input and output, respectively. The time-varying matrices A(t) ∈ Rn×n, B(t) ∈ Rn×l and C(t) ∈ Rn×r

are assumed to be smooth and square integrable on the time interval [0, T ]. The control task is to

find the control function uk(t) in an iterative learning manner such that yk(T ) approaches to a given

desired terminal output yd as k increases. To restrict our discussion, we assume that system (9) is

completely controllable and observable.

Integrating both sides of (9) from 0 to T , we obtain

xk(T ) − xk(0) =

∫ T

0

(A(t)xk(t) + B(t)uk(t))dt (10)
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Let A(t),B(t),xk(t) and uk(t) be approximated in terms of m−term shifted Legendre polynomials

A(t) =

m−1
∑

i=0

AiPi(t), B(t) =

m−1
∑

i=0

BiPi(t), xk(t) =

m−1
∑

i=0

xkiPi(t), uk(t) =

m−1
∑

i=0

ukiPi(t) (11)

where the coefficients Ai and Bi can be determined from (8). Substituting (11) into (10) and using the

properties of shifted Legendre polynomials mentioned in the last section, we have

x̄k − x̄0k =

( m−1
∑

i=0

ĒT
i ⊗ Ai

)

x̄k +

( m−1
∑

i=0

ĒT
i ⊗ Bi

)

ūk (12)

where ⊗ stands for Kronecker product and

x̄ = [xT
k0 x

T
k1 · · · x

T
k,m−1]

T, x̄0k = [xk(0)T 0T · · · 0T]T, ūk = [uT
k0 u

T
k1 · · · u

T
k,m−1]

T

Ēi = (apq)m×m, if p = q = i + 1, then apq = T/(2i − 1), else apq = 0 (p, q = 1, 2, · · · , m)

If matrix Inm −
∑m−1

i=0 ĒT
i ⊗ Ai is nonsingular, x̄k can be expressed by

x̄k = Ā−1B̄ūk + Ā−1
x̄0k (13)

where Inm is the nm−dimensional unity matrix, Ā−1 = (Inm −
∑m−1

i=0 ĒT
i ⊗Ai)

−1, B̄ =
∑m−1

i=0 ĒT
i ⊗Bi

The approximate solution to xk(t) and uk(t) can be written as

x̄k(t) = (Dm(t)T ⊗ In)x̄k (14a)

ūk(t) = (Dm(t)T ⊗ Il)ūk (14b)

Definition 1. We refer to (13) and (14) as m−degree (m > 1) approximated model of linear

time-varying system (9) with respect to {Pi(t)}. The initial condition of the approximated model is

x̄k(0) = xk(0).

Remark 1. The approximated model presented here is more accurate and simpler than the

conventional approximated model concerning {Pi(t)}
[9]. Furthermore, the deduction of (13) avoids

using the complex integration operational matrix of shifted Legendre polynomials. The role Ā−1 plays

in (13) is equivalent to that state transfer matrix Φ plays in (9).

Introducing (14a) into (9), we have the approximate value of the terminal output yk(T )

ȳk(T ) = C̄(Ā−1B̄ūk + Ā−1
x̄0k) = Gūk + ηk (15)

where C̄ = C(T )(Dm(T )T ⊗ In), G = C̄Ā−1B̄, ηk = C̄Ā−1x̄0k. So the expression for the approximate

value of the terminal output error is

ēk(T ) = yd − ȳk(T ) = yd − Gūk − ηk (16)

4 Optimal iterative learning control algorithm

Now the control task is converted into finding an iterative scheme such that ūk converges as k

increases. To derive the learning controller, we consider the following performance index.

Jk+1 = ek+1(T )TFek+1(T ) +

∫ T

0

∆uk+1(t)
TR(t)∆uk+1(t)dt (17)

where ∆uk+1(t) = uk+1(t)−uk(t), ek+1(t) = yd−yk+1(T ), F and R(t) are symmetric positive definitive

weight matrices. We assume R(t) is constant matrix for convenience.

The shifted Legendre polynomials expansion of index function (17) is

Jk+1 =ēk(T )TF ēk(T ) − 2ēk(T )FG∆ūk+1 − 2ēk(T )TF∆ηk+1+

2∆η
T
k+1FG∆ūk+1 + ∆η

T
k+1F∆ηk+1 + ∆ū

T
k+1(G

TFG + R̂)∆ūk+1 (18)

where R̂ =
∫ T

0
[(Dm(t) ⊗ Il)R(Dm(t)T ⊗ Il)]dt,∆ηk+1 = ηk+1 − ηk, ∆ūk+1 = ūk+1 − ūk
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Minimizing the performance index (18) with respect to ∆ūk+1, one can obtain the optimal learning

law

ūk+1 = ūk + [GTFG + R̂]−1GTF [ēk(T ) − ∆ηk+1] (19)

The convergence condition for the above optimal learning scheme is presented in the following

theorem.

Theorem 1. Consider the repetitive linear time-varying system (9) with a given achievable ter-

minal output yd. By applying the control functional parameterization (14b) and the iterative learning

law (19), if 1) ‖ I + GR̂−1GTF ‖> 1, 2) xk(0) = x0, k = 0, 1, 2, · · · are satisfied, then when k → ∞,

the terminal tracking error will converge to a bound.

Proof. From (16) and (19), we obtain the relation between two consecutive operation cycles with

the aid of the matrix inversion lemma[10]

ēk+1(T ) = (I + GR̂−1GTF )−1[ēk(T ) − ∆ηk+1] (20)

Iteratively using (20) leads to

ēk+1(T ) = (I + GR̂−1GTF )−(k+1)
ē0(T ) −

k+1
∑

l=1

(I + GR̂−1GTF )−l∆ηk+2−l (21)

Hence, under the hypothesis of the theorem we have that ēk(T ) → 0 as k → ∞. Since ēk(T ) →

0, ek(T ) → ε, follows. That is, the terminal output error ek(T ) is bounded and the bound is determined

by ε = limk→∞ |C(T )[xk(T )− x̄k(T )]|. This completes the proof. �

5 Simulation

Consider the following repeatable linear time-varying system

[

ẋ1(t)

ẋ2(t)

]

=

[

−t2 2t

2t2 + t 3t2 + 5

] [

x1(t)

x2(t)

]

+

[

t − 1

3t2 + 1

]

u(t), x(0) = 0.1

[

y1(t)

y2(t)

]

=

[

t −2

1 3t

] [

x1(t)

x2(t)

]

, 0 6 t 6 1 (22)

The desired terminal output is given as [y1(1) y2(1)] = [6 5]. We choose F = R = I and m = 3 in the

numerical simulation.

Fig. 1 First terminal output component

vs iterations

Fig. 2 Second terminal output component

vs iterations

Terminal output y1(1) and y2(1) versus the trial numbers are plotted in Fig. 1 and Fig. 2, respec-

tively. We can learn that the convergence bound ε is related to the approximation accuracy of the

approximated model from Theorem 1. To show the approximated model presented here is superior

to the conventional approximated model[9], we give the terminal output values based on these two

different models in Table 1. It can be seen from Table 1 that the approximated model used in the

paper can improve the system control performance.
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Table 1 Terminal outputs based on different approximated models

Weight Matrices The iterative Conventional Approximated model[9] Approximated model Presented

F R number(k) y1(1) y2(1) y1(1) y2(1)

3I I 20 5.901 4.893 5.989 4.995

I I 40 5.872 4.803 5.953 4.978

I 1.5I 60 5.898 4.812 5.959 4.981

6 Conclusions

This work studies the terminal control problem of linear time-varying systems. An iterative

learning algorithm based on shifted Legendre polynomials is developed. An approximated model of

linear time-varying systems is deduced by employing orthogonality relations and boundary values of

shifted Legendre polynomials. We derive optimal learning scheme on the basis of the approximated

model. Finally, an example is presented to demonstrate the effectiveness of the proposed method.
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