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Abstract As saturation is involved in the stabilizing feedback control of a linear discrete-time sys-
tem, the original global-asymptotic stabilization (GAS) may drop to region-asymptotic stabilization
(RAS). How to test if the saturated feedback system is GAS or RAS? The paper presents a criterion
to answer this question, and describes an algorithm to calculate an invariant attractive ellipsoid for
the RAS case. At last, the effectiveness of the approach is shown with examples.
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1 Introduction and problem statement

For convenience, the nomenclature and symbols we will use are list below

GAS global asymptotic stabilization

RAS region asymptotic stabilization

R real number field

Z nonnegative integer set

I unit matrix

A′ transpose of matrix A

| · | absolute value for numbers, or determinant for matrices

λmin(A) minimum eigenvalue of matrix A

sup supremum

Let a time-invariant saturated state feedback system be as follows

{

xt+1 = Axt + but

ut = satd(k
′
xt), t ∈ Z

(1)

where state xt ∈ R
n, control ut ∈ R, A, b and k′ are real constant matrices with appropriate dimensions.

Notice that ut = satd(k
′
xt) := sign(k′xt)min{d, |k′xt|}, where size d > 0 and gain k ∈ Rn are given

beforehand.

Assumption 1. The feedback gain k′ 6= 0, and A + bk′ is Schur stable, i.e., all the eigenvalues

of A+ bk′ lie in the open unit circle.

Assumption 1 implies that there exists a symmetric positive-definite matrix P so that

(A+ bk
′)′P (A+ bk

′) − P = −I (2)

With this P and a positive number r, we define an open ellipsoid

Ω(P, r) := {x ∈ R
n : x

′

Px < r}

Given an initial state x0, denote the evaluation of (1) by ψ(t,x0). A domain Ψ ⊂ Rn is called

to be invariant if ψ(t,x0) ∈ Ψ for all t ∈ Z and all x0 ∈ Ψ . A domain Ξ ⊂ R
n is attractive if

limt→∞ ψ(t,x0) = 0 for all x0 ∈ Ξ . We call the system of (1) to be GAS if the whole state space is

attractive (naturally it is invariant in this case), or RAS if its attractive domain is a subregion of the

state space. However in general cases, an attractive domain may not be invariant, also an invariant

domain may not be attractive.
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Let

L(k′) := {x ∈ Rn : |k′x| 6 d}

obviously, satd(k
′
x) = k′x ∀x ∈ L(k′), thus we call L(k′) the unsaturated region of the feedback

control, or the linear region of the saturated feedback satd(k
′
x), or simply, the linear region[1,2].

This paper will consider the following problem.

Problem 1. Under Assumption 1, how to test the stability of the saturated feedback system of

(1)? Calculate a large invariant attractive ellipsoid in the RAS case.

Before solving the problem above, it is necessary to list some known facts[1∼5]: 1) Even if a

linear discrete-time system is stabilized by a linear state feedback control, as the saturation is involved

in the control, the original GAS may be dropped to RAS. 2) For the saturated system of (1) with

Assumption 1, its linear region may be neither invariant nor attractive. 3) Ω(P, r) is invariant and

attractive whenever Ω(P, r) ⊂ L(k′). 4) Let V (xt) := x′

tPxt where P ′ = P > 0 is the solution matrix

of (2). Ω(P, r) is (contractively) invariant for the system of (1) if ∆V (xt) = V (xt+1) − V (xt) 6 (<)0

for all nonzero xt ∈ Ω(P, r) and t ∈ Z. Clearly, if Ω(P, r) is contractively invariant, then it is inside

the domain of attraction.

Actuator saturation is a nonlinear problem that needs to be dealt with in all practical control

systems, especially in servo or robot control systems[6]. In the literature, invariant attractive ellipsoids

have been used to estimate the domain of attraction for linear discrete-time systems with saturated

state feedback under either some restrictive conditions or overelaborate procedure. However, different

from the known results, we will present a clear and simple procedure to solve Problem 1 based on the

discrete-type Lyapunov equation, but without restriction on matrix A.

2 Main result

Define a so-called saturation level function, µ : Rn → [0, 1)

µ(x) :=

{

0, x ∈ L(k′)

1 − d
|k′x|

, x 6∈ L(k′)
(3)

We simply denote µ(·) by µ if no confusion occurs. It is easy to see that satd(k
′
x) = (1− µ)k′x for all

x ∈ Rn. Thus the system of (1) can be rewritten as

xt+1 = (A+ (1 − µ)bk′)xt (4)

For any positive number r and the solution matrix P > 0 in (2), it is easy to prove that

sup{|k′x| : x ∈ Ω(P, r)} =
√

r(k′P−1k)

and that the supremum is achievable as x → ±
√

r
(k′P−1

k)
, the boundary points of Ω(P, r). Thus we

have

µ
+ = sup{µ(x) : x ∈ Ω(P, r)} =







0, Ω(P, r) ⊂ L(k′)

1 − d
√

r(k′P−1k)
> 0, Ω(P, r) 6⊂ L(k′)

Conversely, if µ+ ∈ [0, 1) is known in advance, then

r =
d2

(k′P−1k)(1 − µ+)2
(5)

With this r and matrix P ′ = P > 0 in (2) the ellipsoid Ω(P, r) can be uniquely determined.

Lemma 1. i) If µ+ = 0, then Ω(P, r) ⊂ L(k′) and µ(x) ≡ 0 ∀x ∈ Ω(P, r). ii) If µ+ > 0, then

Ω(P, r) 6⊂ L(k′) and µ(x) < µ+ ∀x ∈ Ω(P, r).

Proof. Recalling the definitions of µ and µ+ derives assertion i) immediately. ii) From r =

d
2

(k′P−1
k)(1 − µ

+)2
, we know sup{|k′x| : x ∈ Ω(P, r)} = d

1 − µ
+ > d. This implies that there exists

x̂ ∈ Rn such that |k′x̂| > d, i.e., x̂ 6∈ L(k′). Thus the lemma is proved. �
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The most important thing is how to determine µ+. To this end, let

µ
+ := sup{µ ∈ [0, 1) : I + µE > 0} (6)

where

E :=

[

0 P 1/2bk′

kb′P 1/2 G+G′

]

(7)

G := kb
′

P (A+ bk
′) (8)

From (6) it is easy to find

µ
+ =

{

1, λmin(E) > −1

− 1
λmin(E)

, λmin(E) < −1

and furthermore, I + µE > 0 ∀µ ∈ [0, µ+).

Before presenting our main result, we need another useful lemma.

Lemma 2. For some ν ∈ R, I + ν(G + G′) − ν2kb′Pbk′ > 0 if and only if I + νE > 0 for the

same ν, where G and E are defined in (8) and (7), respectively.

Proof. Notice that
[

I 0

−νkb′P 1/2 I

] [

I νP 1/2bk′

νkb′P 1/2 I + ν(G+G′)

] [

I −νP 1/2bk′

0 I

]

=

[

I 0

0 I + ν(G+G′) − ν2kb′Pbk′

]

Hence the result follows. 2

Now we are ready to present our main result.

Theorem 1. Suppose that system (1) satisfies Assumption 1. i) If λmin(E) > −1, where E is

defined in (7),then system (1) is GAS;

ii) If λmin(E) < −1, then system (1) is RAS, and Ω(P, r) is contractively invariant ellipsoid, where

P ′ = P > 0 satisfies (2), µ+ and r are calculated from (9) and (5), respectively.

Proof. We use the descriptions of (4) instead of (1). Let V (xt) = x
′

tPxt. Along with the

trajectory of (4), we have ∆V (xt) = x
′

t+1Pxt+1 − x
′

tPxt = −x
′

t(I + µ(G + G′) − µ2kb′Pbk′)xt. i) If

λmin(E) > −1, then 1 + µλmin(E) > 0 ∀µ ∈ [0, 1), furthermore, I + µ(xt)E > 0 ∀xt ∈ Rn, based on

Lemma 2, we immediately have (I + µ(xt)(G + G′) − µ(xt)
2kb′Pbk′) > 0 for all xt ∈ Rn. This also

means that ∆V (xt) < 0 ∀xt ∈ R
n, i.e., the saturated system is GAS. ii) if λmin(E) < −1, recalling the

formula of (9), µ+ = − 1
λmin(E)

< 1 and 1 + µ+λmin(E) = 0, thus, I + µ+E > 0. From this we know

I+µ(xt)E > 0 ∀xt ∈ Ω(P, r). Based on Lemma 2, we have (I+µ(xt)(G+G′)−µ(xt)
2kb′Pbk′) > 0 for

all xt ∈ Ω(P, r). Obviously, this leads to ∆V (xt) < 0 ∀xt ∈ Ω(P, r), which means that the saturated

feedback system of (1) is RAS with Ω(P, r) as its invariant and attractive ellipsoid. 2

3 Algorithm and examples

Collecting the results of the preceding sections leads to

Algorithm

Step 1. Select k′ 6= 0 so that A+ bk′ is Schur stable, and has satisfactory performances;

Step 2. Solute P = P ′ > 0 in (2);

Step 3. Calculate G, E in (8) and (7), and λmin(E);

Step 4. If λmin(E) > −1, then system (1) is GAS, else it is RAS;

Step 5. Determine µ+ according to (9);

Step 6. Calculate r according to (5), then ellipsoid Ω(P, r) is invariant and attractive.

Based on the above algorithm, we calculate the following three examples.

Example 1. Given xt+1 = xt + sat∆(−1.5xt) with d = 1, xt ∈ R, t ∈ Z.

Solution. E =

[

0 −1.7321

−1.7321 2.0000

]

, λmin(E) = −1. Hence the system is GAS.

Example 2. Given xt+1 = 2xt + sat∆(−2.5xt) with d = 1, xt ∈ R, t ∈ Z.
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Solution. E =

[

0 −2.8868

−2.8868 3.3333

]

, λmin(E) = −1.6667 < −1. Hence the system is RAS.

Since P = 1.3333 and r = 1.3333, hence (−1, 1) is its invariant and attractive interval.

Example 3. Given xt+1 =

[

1 2

0 0.8

]

xt +

[

0

1

]

sat∆([−0.8100 −2.5000]xt), with xt ∈ R
2, t ∈ Z.

Solution. E =









0 0 −1.1310 −3.4907

0 0 −3.2499 −10.0089

−1.1310 −3.2499 10.7955 28.6201

−3.4907 −10.0089 28.6201 73.8299









, λmin(E) = −1.6942 < −1. Hence

the system is RAS, and has an invariant and attractive ellipse Ω(P, r) with P =

[

4.6827 7.8984

7.8984 17.9781

]

and r = 57.2427(d = 2), or r = 14.8107(d = 1), respectively.

4 Conclusions

Stability analysis becomes rather involved as saturation appears in linear discrete-time systems.

This paper analyzes the stability of system (1), tests if it is GAS or is dropped to RAS, and calculates

its invariant attractive ellipsoid for the latter case. Different from the published results, our method

has put no restriction on the system matrix A. Generally speaking, the saturated system can never be

GAS if A has any eigenvalue out of the unit circle; however, the invariant attractive ellipsoid will be

large enough if i) all |λ(A)| 6 1, and/or ii) a feedback gain k′ is chosen such that all λ(A+ bk′) lie in

a suitable region of the unit circle.

Further study will deal with i) multi-input saturated systems, ii) uncertain saturated systems,

and iii) finding a good k to guarantee a much larger invariant attractive ellipsoid.
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