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Abstract New idea of stabilization for discrete linear multiple-input system is proposed based on
switching technique and single-input control. The system discussed here denotes coupled single-
input objects to be controlled. The central processing unit chooses an object at each discrete instant
according to periodic switching strategy and controls it by local state feedback. Stabilization of a
multiple-input system is turned into stabilization of single-input systems under periodic switching
strategy, which is easy to be realized in practice. On the other hand, only one central processing unit
can realize all local controllers, which decreases the cost and increases the usage of the resources.
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1 Introduction

Multiple-input systems exist in industrial installation, electrical networks, aerospace engineering,

chemical processes, social economic system, biological systems, etc. Many methods for analyses and

design of linear multiple-input systems have been put forward for time domain or frequency domain[1∼3].

Multiple-input discrete linear system discussed here consists of m (>2) single-input discrete sub-

systems with coupling, each subsystem denotes a controlled object[4]. In order to stabilize the multiple-

input system, we present a method by which the central processing unit (CPU) chooses only one sub-

system at each discrete instant according to the periodic switching strategy (PSS) and controls it by

local controller. PSS means the choosing of subsystems is periodic, and the period is m. LC means it

is constructed only by the corresponding substate, not the whole state vector.

This idea is illuminated by the research of switching control[5∼7] and possesses the following

characters. Firstly, at each discrete instant it is single-input subsystem for which we design the local

controller. Secondly, PSS has a simple structure and can be run conveniently. Thirdly, There is only

one local controller running at each discrete instant. One CPU can realize all controllers due to this

character, so we can save lots of hardware and make full use of various related resources.

2 Descriptions of System

Consider m (>2) discrete linear single-input subsystems

xi(t + 1) = Aiix(t) + biiui(t), t ∈ N, i ∈ m (1)

where N = {0, 1, 2, · · ·}, m = {1, 2, · · · , m}. Such systems are denoted as (Aii, bii) for simplicity. All

(Aii, bii) and their linear coupling constitute a multiple-input system

x(t + 1) = Ax(t) + Bu(t), t ∈ N (2)

where A = (Aij)m×m, B = (bij)m×m, Aij ∈ Rni×nj , bij ∈ Rni , xT(t) = (xT
1 (t),xT

2 (t), . . . , xT
m(t)),xi(t)

∈ Rni , uT(t) = [u1(t), u2(t), · · · um(t)], ui ∈ R, i ∈ m. R denotes the space of real number, Rn denotes

the space of real vectors with dimensions n, Rn×m denotes the space of real matrix with dimensions

n × m. System (2) can be described as

xi(t + 1) = Aiix(t) + biiui(t) +
∑

j 6=1

[Aijxj(t) + bijuj(t)], t ∈ N, i, j ∈ m (3)
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3 Main Results

In our plan, CPU controls each single-input subsystem (Aii, bii) periodically by the corresponding

local controller. For arbitrary l ∈ N, i ∈ m, t(l, i)
4
= lm + i− 1, where the symbol

4
= denotes be defined

as. The control strategy is

ui(t) =

{

kixi(t), t = t(l, t)

0, t 6= t(l, i)
, l ∈ N, i ∈ m (4)

Lemma 1[4]. The necessary and sufficient condition for assigning poles arbitrarily for a discrete

linear system by state feedback is that the system is reachable.

We need the first hypothesis based on Lemma 1.

H1. Single-input discrete systems (Am
ii , Am−1

ii b) are all reachable, i ∈ m

Hi
4
= Am−i

ii (Aii + biiki)A
i−1
ii , i =∈ m (5)

Under hypothesis H1, for arbitrary ri ∈ [0, 1), there exists gain ki so that

p(Hi) = p(Am
ii + Am−1

ii biiki) = ri, i ∈ m (6)

where p(•) denotes spectrum radius of matrices.

Hence, for arbitrary positive definite matrix Qi ∈ Rni×ni , the discrete Lyapunov equation

HT
i PiHi − Pi + Qi = 0 (7)

has a unique positive definite solution Pi ∈ Rni×ni , i ∈ m

A
(s)
ij

4
=

{

Aij + bisks, j = s

Aij , j 6= s
, i, j, s ∈ m, A(s) 4

= [A
(s)
ij ]m×m (8)

Then the closed-loop system of control strategy (4) and system (3) is

x(t + 1) = A(i)x(t), t = t(l, i), l ∈ N, i ∈ m (9)

Ā
4
= (Āij)m×m

4
=

m
∏

s=1

A(m−s+1), Āij ∈ Rni×nj , Hij
4
=

{

Āij , j 6= i

Āii − Hi, j = i
, ξi(l)

4
= xi(lm), l ∈ N (10)

The discrete system

ξ(l + 1) = Hiξi(l) +

m
∑

j=1

Hijξj(l), l ∈ N, i ∈ m (11)

is called the induced system of closed-loop system (9). It is easy to proof the following lemma:

Lemma 2. The closed-loop system (9) is asymptotically stable if and only if its induced system

(11) is asymptotically stable

Wii
4
= −Qi + 2HT

i PiHii +

m
∑

k=1

HT
kiPkHki (12)

Wij
4
= 2HT

i PiHij +

m
∑

k=1

HT
kiPkHkj , j 6= i (13)

W
4
= (Wij)m×m, W̄

4
= −(W T + W )/2 = (W̄ij)m×m (14)

λmin(•) denotes the minimum eigenvalue, ‖•‖ denotes consistent norm of vectors or matrices

W̃
4
= (w̃ij)m×m, w̃ =

{

λmin(W̄ii), j = i

− ‖ W̄ij ‖, j 6= i
(15)

We suppose system (3) satisfies the following hypothesis based on (12)∼(15).
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H2. The symmetric matrix W̃ is positively definite.

We will discuss the stability of the induced system (11)

zi(lm)
4
=‖ x(lm) ‖, i ∈ m, z(lm)

4
= (z1(lm), z2(lm), · · · , zm(lm))T (16)

Theorem 1. The induced system (11) is asymptotically stable under H2.

Proof. Defining positively definite function

V (lm) =

m
∑

i=1

x
T
i (lm)Pixi(lm) (17)

It can be proved that

4V (lm) = V (lm + m) − V (lm) 6 −z
T(lm)W̃z(lm) (18)

H2 shows that functionis 4V (lm) negative definitely, so the proof is accomplished. �

Lemma 2 and Theorem 1 imply the following conclusion:

Theorem 2. Controllers (4) can stabilize multiple-input system (3) if H1 and H2 hold. The gains

ki(i ∈ m) are determined by (6).

4 Simulation

The example has two single-input subsystems with orders 2 × 2, so m = 2.

A11 =

(

2.5778 0.4948

−2.2236 0.9972

)

, b11 =

(

0.6004

−0.9429

)

, A22 =

(

−1.0543 0.8563

−0.0042 −1.1624

)

, b22 =

(

−0.3089

0.1848

)

The coupling is described as

A12 =

(

0.0269 0.0120

0.0089 −0.0678

)

, b12 =

(

0.0166

−0.0199

)

, A21 =

(

0.0550 −0.0344

0.0401 −0.0725

)

, b21 =

(

0.0752

−0.0511

)

Both (A11, b11) and (A22, b22) are controllable, therefore, H1 is satisfied. eig(•) denotes the set of the

eigenvalues of a matrix. Direct calculation shows

eig(A2
11) = {2.7103 ± 2.4892i}, eig(A2

22) = {1.2278 ± 0.0568i}

Subsystems (A11, b11), (A22, b22) and the system are all unstable. Let r1 = r2 = 0.25 ∈ [0, 1); then the

corresponding gains are

k1 = (−2.2351 1.1624), k2 = (−2.5380 3.4094)

The calculation shows

H1 =

(

3.1281 3.0359

−2.8641 −2.7598

)

, H2 =

(

0.2860 −0.0029

0.5011 0.2135

)

Let Q1 = Q2
4
= I2, where I2 denotes identity matrix with order 2. Further calculation shows

W̃ =

(

0.9397 −0.6177

−0.6177 0.9001

)

, λmin(W̃ ) = 0.3018 > 0

so W̃ is positively definite and H2 is also satisfied.

The following Fig. 1 describes the asymptotical stability of the closed-loop system. The abscissas

denote discrete instants. The polygonal line above represents the norm of substate x1(t) and polygonal

line below represents the negative norm of substate x2(t) for a better contrastive effect.

5 Conclusion

This paper discusses discrete linear multiple-input system and presents a method for system

stabilization, in which local state feedback controllers run according to periodic switching strategy.
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The problem lies on the control of subsystems and the definiteness of a matrix. The former is easy for

all subsystems are single-input, and the later is also easy because of the low dimension and symmetry

of object matrix.

Fig. 1 The asymptotical stability of the closed-loop syetem
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