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Abstract The problem of global stabilization by state feedback for a class of time-delay nonlinear
system is considered. By constructing the appropriate Lyapunov-Krasovskii functionals (LKF) and
using the backstepping design, a linear state feedback controller making the closed-loop system
globally asymptotically stable is constructed.

Key words Nonlinear time-delay systems, state feedback, globally asymptotically stability, back-
stepping design method

1 Introduction

Nonlinear system with delay constitute basic mathematical models of real phenomena and time

delays are often encountered in various engineering systems. Moreover, the existence of time delays is

frequently a source of instability in some way. Hence, the problem of stability analysis of time-delay

systems has been one of the main concerns of researchers wishing to inspect the properties of such

systems.

In [1], the output feedback stabilization was considered for a class of time-delay nonlinear systems

with delay only dependent on output. [2] studied the problem of almost disturbance decoupling for

strict feedback nonlinear delayed system with adaptive L2-gain disturbance attenuation. In [3], using

backstepping method, the author considered the state feedback stabilization for a class of time-delay

nonlinear systems, however, its main result is not correct in general[4]. So, it is very difficult and much

valuable to proceed the stability analysis for nonlinear time-delay systems.

The backingstepping design method is a powerful tool to design stability controllers for nonlinear

system[1,2,5]. In this note, based on the backstepping design method, the stability controllers for a

class of nonlinear time-delay systems are constructed. Moreover, different from [1] and [2], our stability

controllers are linear.

2 Preliminaries

In this paper, we consider the following single-input-single-output (SISO) delay systems

ẋi(t) = xi+1(t) + φi(t, x(t), x(t − d), u(t)), i = 1, 2, · · · , n − 1

ẋn(t) = u(t) + φn(t, x(t), x(t − d), u(t)) (1)

where x = [x1, · · · , xn]T ∈ Rn is the state vector, u ∈ R is the input, d > 0 is a known time

delay of the system. In this paper, we always denote xi(t) and ξi(t) by xi and ξi. The mappings

φi : R × Rn × Rn × R −→ R, i = 1, 2, · · · , n, are continuous and satisfy the following linear growth

condition.

Assumption 1. For i = 1, 2, · · · , n, there exist constants c > 0 and c1 > 0 such that

|φi(t, x, x(t − d), u)| 6 c

i
∑

k=1

|xk| + c1

i
∑

k=1

|xk(t − d)| (2)

Under the above assumption, we design the linear state feedback controller

u = Kx(t)
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such that the closed-loop systems (1) and (3) are globally asymptotically stable (GAS) at the equilib-

rium x = 0.

In the case of c1 = 0 in Assumption 1, [5] and [6] have respectively studied the output feedback

control and the state feedback control for system (1).

3 Main result

Theorem 1. Under Assumption 1, there exists a linear state feedback controller such that

time-delay nonlinear system (1) is GAS.

Proof. We use backstepping design method to design the controller.

Step 1. Choose Ṽ1(x1) = x
2
1
2 ; then

˙̃
V 1 =x1(x2 + φ1(·)) 6 x1x2 + cx

2
1 + c1 |x1| · |x1(t − d)| 6

x1(x2 − x
∗

2) + x1x
∗

2 + cx
2
1 +

c1

4
x

2
1 + c1 x

2
1(t − d)

Let

ξ2 = x2 − x
∗

2, x
∗

2 = −b1x1, (4)

where b1 = n + c + c1
4 + nc1 + 1

2, and we have ˙̃
V 1 6 x1ξ2 − nx2

1 − nc1 x2
1 −

1
2 x2

1 + c1 x2
1(t − d).

Taking V1(x1) = Ṽ1 +
∫ t

t−d
nc1x

2
1(τ )dτ , we have V̇1 6 −nx2

1 − (n − 1)c1 x2
1(t − d) − 1

2 x2
1 + x1ξ2.

Inductive Step. Suppose at step m, there is a smooth LKF function Vm(x1, ξ2, · · · , ξm), and a set

of controllers x∗

1, · · · , x
∗

m+1 defined by

ξ1 = x1 − x
∗

1, x
∗

1 = 0

ξj = xj − x
∗

j , x
∗

j = −bj−1ξj−1, j = 2, 3, · · · , m + 1 (5)

such that

V̇m 6 −(n − (m − 1))

m
∑

j=1

ξ
2
j − (n − m)c1

m
∑

j=1

ξ
2
j (t − d) −

1

2
ξ
2
m + ξmξm+1 (6)

We shall show that (6) also holds at step m + 1.

Let Ṽm+1(ξ1, · · · , ξm+1) = Vm(ξ1, · · · , ξm) + 1
2

ξ2
m+1; then

˙̃
V m+1 6 −(n − (m − 1))

m
∑

j=1

ξ
2
j − (n − m)c1

m
∑

j=1

ξ
2
j (t − d) +

1

2
ξ
2
m+1 + ξm+1ξ̇m+1 (7)

We use (2) and (5) to estimate ξm+1ξ̇m+1

ξm+1ξ̇m+1 = ξm+1(ẋm+1 + bmξ̇m) 6 ξm+1xm+2 + |ξm+1|

( m+1
∑

j=1

(rm+1,j |ξj |)

)

+

|ξm+1|

( m
∑

j=1

(lm+1,jc1|ξj(t − d)|) + c1|ξm+1(t − d)|

)

6 ξm+1xm+2+

( m
∑

j=1

(

r2
m+1,j + c1l

2
m+1,j

4

)

+ rm+1,m+1 +
c1

4

)

ξ
2
m+1 +

m
∑

j=1

ξ
2
j +

m+1
∑

j=1

c1 ξ
2
j (t − d) (8)

where rm+1,j , lm+1,j(j = 1, 2, · · · , m) and rm+1,m+1 are nonnegative constants dependent on c, bj (j =

1, 2, · · · , m).

Combing (7) and (8), we arrive at

˙̃
V m+1 6 − (n − m)

m
∑

j=1

ξ
2
j − (n − (m + 1))c1

m
∑

j=1

ξ
2
j (t − d) + ξm+1(xm+2 − x

∗

m+2) + ξm+1x
∗

m+2+

( m
∑

j=1

(

r2
m+1,j + c1 l2m+1,j

4

)

+ rm+1,m+1 +
c1

4
+

1

2

)

ξ
2
m+1 + c1 ξ

2
m+1(t − d) (9)
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Let

ξm+2 = xm+2 − x
∗

m+2, x
∗

m+2 = −bm+1ξm+1

where

bm+1 = n − m +

m
∑

j=1

(

r
2
m+1,j + c1 l

2
m+1,j

4

)

+ rm+1,m+1 +
c1

4
+ 1 + (n − m)c1

then

˙̃
V m+1 6 − (n − m)

m
∑

j=1

ξ
2
j − (n − (m + 1))c1

m
∑

j=1

ξ
2
j (t − d) + ξm+1ξm+2−

(n − m)ξ2
m+1 −

1

2
ξ
2
m+1 − (n − m)c1 ξ

2
m+1 + c1 ξ

2
m+1(t − d)

Takeing Vm+1(ξ1, · · · , ξm+1) = Ṽm+1 +
∫ t

t−d
(n − m)c1ξ

2
m+1(τ )dτ , we get

V̇m+1 6 −(n − m)
m+1
∑

j=1

ξ
2
j − (n − (m + 1))c1

m+1
∑

j=1

ξ
2
j (t − d) −

1

2
ξ
2
m+1 + ξm+1ξm+2

Step n. Let Ṽn(ξ1, · · · , ξn) = Vn−1(ξ1, · · · , ξn−1) + 1
2 ξ2

n. Similar to (9), we can get

˙̃
V n 6 −

n−1
∑

j=1

ξ
2
j + ξnu +

( n−1
∑

j=1

(

r2
n,j + c1l

2
n,j

4

)

+ rn,n +
c1

4
+

1

2

)

ξ
2
n + c1ξ

2
n(t − d)

where nonnegative constants rn,j , ln,j(j = 1, 2, · · · , n− 1) and rn,n are dependent on c, bj(j = 1, 2, · · · ,

n − 1).

Taking

u = −bnξn = −bn(xn + bn−1(xn−1 + · · · + b2(x2 + b1x1) · · ·)) (10)

where

bn = 1 +

n−1
∑

j=1

(

r
2
n,j + c1 l

2
n,j

4

)

+ rn,n +
c1

4
+

1

2
+ c1

we have

˙̃
V n 6 −

n
∑

j=1

ξ
2
j − c1 ξ

2
n + c1 ξ

2
n(t − d)

Taking Vn = Ṽn +
∫ t

t−d
c1 ξ2

n(τ )dτ, we have V̇n 6 −
∑n

j=1 ξ2
j .

Up to now, we have constructed LKF Vn = 1
2

∑n

j=1 ξ2
j + c1

∫ t

t−d

∑n

j=1((n + 1 − j)ξ2
j (τ ))dτ for

ξ−system. Since V̇n is negatively definite, ξ−system under the control u = −bnξn is GAS at the

equilibrium ξ = 0. Consequently, the closed-loop systems (1) and (10) are also GAS at the equilibrium

x = 0. �

4 Example

We consider the following system

ẋ1 = x2 + x1(sin x2)
2 + d1(t)x1(t − d)

ẋ2 = u + x1 + x2 + d2(t)(x1(t − d))
1

3 (x2(t − d))
2

3

where uncertain disturbance di(t) satisfies 0 6 di(t) 6 1, i = 1, 2.

It is easy to see that Assumption 1 is satisfied with c = 1, c1 = 1. As proceeded in the proof of

Theorem 1, we can choose b1 = 23
4 , b2 = 569, and the control u = −569ξ2 = −569

(

x2 + 23
4 x1

)

.

Remark. Specifically, if di(t) = 0(i = 1, 2), that is, c1 = 0, we can get b1 = 7
2 , b2 = 109,

consequently we have the control u = −109ξ2 = −109
(

x2 + 7
2x1

)

. It can be seen that the gain of the

control for the system with delay is higher than the gain of the control for the system with no delay.
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5 Conclusion

In this paper, we have studied the problem of global stabilization by state feedback, for a class of

nonlinear delay system satisfying linear growth condition. We think there is much work to do for the

more general nonlinear delay systems.
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