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Abstract In this paper, we use the matrix measure technique to study stable fault-tolerance control
of networked control systems. State feedback networked control systems with the network-induced
delay, parameter uncertainties, sensor failures and actuator failures are considered. State feedback
gain K is designed for any invariant delay τ , and some theorems and sufficient conditions for sta-
ble fault-tolerance control are given. Example is presented to illustrate the effectiveness of these
theorems.
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1 Introduction

NCS (networked control system) is a kind of feedback control system where the control loops

are closed through a real-time network[1∼4]. The primary advantages of an NCS are reduced system

wiring, reduced weight and power, lower cost, improved system reliability and performance, simpler

installation and maintenance. It has been used extensively in modern complicated industry process,

aircraft and space shuttle, nuclear power station, high-performance automobile, etc. However, because

of the limited communication bandwidth and the loss of information sources, the network-induced delay

is inevitable during information transmission and receiving. The network-induced delay can degrade the

performance of control systems designed without considering it and can even destabilize the system[1],

which makes analysis and design of an NCS complex.

The problem of stability analysis for networked control system has attracted a considerable amount

of interest in recent years. Zhang et al., discussed fundamental issues for system where network delay

was introduced into the feedback[1]. Stability results were derived for constant delay in the system

and asynchronous dynamical system techniques were used to analyze the average stability of system

with lost packets. Walsh et al. introduced Try-Once-Discard protocol and the notion of a maximal

allowable transfer interval, denoted by τ [2]. Their goal was to find the value of τ for the globally

exponential stability of NCS. Branicky showed that the stability of an NCS with network-induced

delay could also be analyzed using a hybrid system stability analysis technique[5]. In these papers,

the problems of parameter uncertainties, sensor failures, actuator failures were not considered and

the results were given in terms of the conventional methods of either Lyapunov functions or matrix

eigenvalues[1,2,5,6]. However, to the best of our knowledge, the network-induced delay of networked

control systems often can be longer than one sampling period, and the system normally involves the

problems of parameter uncertainties, sensor failures, actuator failures, which make the use of these

conventional methods difficult and even ineffective. To overcome this dilemma, by using matrix norm

and matrix measure, we will present how to simplify a complex and high order network-induced delay

system. Based on that, for any invariant delay τ , when the system involves parameter uncertainties,

sensor failures, actuator failures, we will present how to design state feedback gain K, which makes

system attain stable fault-tolerance control.

The paper is organized as follows. In Section 2, we present the structure and the mathematical

model of NCS. In Section 3, some definitions and theorems are given for stable fault-tolerance control.

Example is presented in Section 4. The conclusion and our future work are given in the last section.
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2 Description of the problem

The NCS model considering network-induced delay is shown in Fig. 1[1]. Network-induced delay

in NCS occurs when sensors, actuators, and controllers exchange data across the network. There are

two sources of delays from the network: sensor-to-controller τsc and controller-to-actuator τca. Any

computational delay caused by controller can be absorbed into either τsc or τca without loss of generality.

τsc and τca can be lumped together as τ = τsc + τca, which can be constant, time-variant, or random.

Fig. 1 The model of networked control system

To simplify the system analysis, this paper considers the following conditions:

1) The system is time-invariant linear system. The network-induced delay is any constant which

can be achieved by using an appropriate network protocol[1] and other technique[7,8]. The network-

induced delay can be longer than one sampling period. Assume the network-induced delay is τ =

(d − 1)h + τ ′, where 0 6 τ ′ 6 h, h is one sampling period, and d is a positive integer.

2) We choose the mode for controller-event-driven[9], and guarantee no data loss and its sequen-

ce[10].

We consider the issues of state feedback, and the closed-loop system equation can be written as[1]

{

ẋ(t) = Ax(t) + Bu(t), t ∈ [kh + τ, (k + 1)h + τ ]

u(t+) = Kx(t − τ ), t ∈ {kh + τ, k = 0, 1, 2, · · ·}
(1)

where u(t) ∈ Rm is the control input vector, x(t) ∈ Rn is the state vector, A ∈ Rn×n and B ∈ Rn×m

are known constant matrices, K ∈ Rm×n is state feedback gain matrix, u(t+) is piecewise continuous

and only changes value at kh + τ .

3 Design of stable fault-tolerance control

The matrix measure can be used to study the stability of linear systems. The key idea is that

the simple system can be obtained using the matrix measure technique. In this paper, we will use this

technique to study complex networked control systems.

Definition 1. Let |x|. denote a vector norm of x on Cn, where . = 1, 2,∞, · · ·, and ‖A(t)‖. is

the matrix norm of A(t) induced by this vector norm. The symbol µ.[A(t)] denotes the matrix measure

derived from the matrix norm ‖A(t)‖ and defined as[11,12]

µ.[A(t)] = lim
θ→0

+

‖I + θA(t)‖. − 1

θ
(2)

where I is the identity matrix with the same dimension as A(t).

For convenience, we list only two properties of µ.[A(t)] in the following lemma.

Lemma 1[12]. µ.[A(t)] is defined for any induced norm and has the following properties

a) For any αj > 0 (1 6 j 6 k) and any matrix Aj(t) (1 6 j 6 k), we have

µ.

[ k
∑

j=1

αjAj(t)

]

6

k
∑

j=1

αjµ.[Aj(t)]

b) For any norm and any A(t), we have µ.[A(t)] 6 ‖A(t)‖.
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Theorem 1. Let µ.[A(t)] be given by (2), for t0 6 t; then we have

∥

∥

∥
exp

{

∫ t

t0

A(s)ds
}
∥

∥

∥
. 6 exp

{

∫ t

t0

µ.[A(s)]ds
}

Proof. Consider the following linear system

ẋ(t) = A(t)x(t) (3)

The solution of (3) is

x(t) = x(t0) exp
{

∫ t

t0

A(s)ds
}

Using the known inequality (Coppel′s Inequality[11,13])

‖x(t)‖. 6 ‖x(t0)‖.exp
{

∫ t

t0

µ.[A(s)]ds
}

For any x(t0), we have ‖x(t0) exp{
∫ t

t0
A(s)ds}‖. 6 ‖x(t0)‖. exp{

∫ t

t0
µ.[A(s)]ds}

Considering the definition of norm, we have

max
‖x(t0)‖. = 1

∥

∥

∥
x(t0) exp

{

∫ t

t0

A(s)ds
}

∥

∥

∥
. =

∥

∥

∥
exp

{

∫ t

t0

A(s)ds
}
∥

∥

∥
.

Hence,
∥

∥

∥
exp

{

∫ t

t0

A(s)ds
}
∥

∥

∥
. 6 exp

{

∫ t

t0

µ.[A(s)]ds
}

The theorem is proved. �

Definition 2. Diagonal matrix F = diag(f1, f2, · · · , fm) inserted between state feedback matrix

K and state vector x(t) denotes sensor failure, where

fi =

{

1, ith sensor work

0, ith sensor failure
, i = 1, 2, · · · , n

Definition 3. Diagonal matrix L = diag(l1, l2, · · · , ln) inserted between control input vector u(t)

and B control matrix denotes actuator failure, where

li =

{

1, ith sensor work

0, ith sensor failure
, i = 1, 2, · · · , m

Definition 4. We define the matrices ∆A(t) and ∆B(t) representing time-varying parameter

uncertainties in the system model with appropriate dimensions and assume

‖∆A(t)‖. 6 a, ‖∆B(t)‖. 6 b

Theorem 2. Considering the characteristic equation

f(λ) = λ
d+1 − aλ

d − bλ − c = 0 (4)

where a, b and c are nonnegative real numbers, d = 1, 2, 3, · · ·, all the characteristic roots of (4) satisfy

|λ| < 1 if and only if 1 − a − b − c > 0.

Proof. Let us rewrite (4) in the form

λ
d+1 = aλ

d + bλ + c (5)

Taking norms on both sides of (5), we obtain

|λ|d+1 = |aλ
d + bλ + c| 6 a|λ|d + b|λ| + c

or

|λ|d+1 − a|λ|d − b|λ| − c 6 0 (6)
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It shows that if λ is the characteristic root of (4), then (6) must be satisfied.

Assume that g(|λ|) = |λ|d+1 − a|λ|d − b|λ| − c. Then differentiating g(|λ|) with respect to |λ| we

have

g
′(|λ|) = (d + 1)|λ|d − ad|λ|d−1 − b = d|λ|d−1(|λ| − a) + |λ|d − b (7)

Necessity would be obvious from Jury criterion, i.e., when all the characteristic roots of (4) satisfy

|λ| < 1, the inequality f(1) > 0 must be satisfied, i.e., 1 − a − b − c > 0.

For sufficiency, let us prove it by contradiction. Assume if 1 − a − b − c > 0, the characteristic

equation (4) has the root that satisfies |λ| = α > 1.

Since 1 − a − b − c > 0, if |λ| > 1, then |λ| > a, |λ|d > b. Hence from (7), we have

g
′(|λ|) > 0

It shows that g(|λ|) is an increasing function when |λ| > 1. Furthermore, g(1) > 0 for |λ| = 1.

Hence if |λ| = α > 1, the following can be obtained

g(α) > 0

This contradicts equation (6). It implies that if 1 − a − b − c > 0, (4) has not the characteristic root

that satisfies |λ| = α > 1. This completes the proof. �

Theorem 3. Consider system (1), for any constant fixed matrix A, and any invariant network-

induced delay τ . The parameter uncertain matrices are ∆A(t) and ∆B(t). If there exists a matrix

norm such that ‖∆A(t)‖. 6 a, ‖∆B(t)‖. 6 b, µ.(A) + a < 0, and the system involves parameter

uncertainties, sensor failures, actuator failures, then we can design state feedback gain K, such that

when (‖B‖.+b)‖K‖. < −(µ.(A)+a), the discrete system of system (1) can attain stable fault-tolerance

control.

Proof. Considering the system with parameter uncertainties, sensor failures, and actuator failures

and sampling the closed-loop system (1), we obtain the following discrete system model[1,14]:

x(k + 1) =Φ(k + 1, k)x(k) +

∫ kh+h

kh+τ ′

Φ(k + 1, t)(B + ∆B(t))LKFdtx(k − d + 1)+

∫ kh+τ ′

kh

Φ(k + 1, t)(B + ∆B(t))LKFdtx(k − d) (8)

where Φ(k + 1, t) is the transition matrix of (A + ∆A(t)). From Theorem 1 and Lemma 1, we obtain

‖Φ(k + 1, t)‖. =
∥

∥

∥
exp

{

∫ kh+h

t

[A + ∆A(s)]ds
}

∥

∥

∥
. 6 exp

{

∫ kh+h

t

µ.[A + ∆A(s)]ds
}

6

exp
{

∫ kh+h

t

[µ.(A) + µ.(∆A(s))]ds
}

6 exp
{

∫ kh+h

t

[µ.(A) + a]ds
}

= exp{(µ.(A) + a)(kh + h − t)}

Similarly, we have ‖Φ(k + 1, k)‖. 6 exp{(µ.(A) + a)h}. Thus, evaluating the norm ‖ ∗ ‖. of both sides

of (8) and simplifying it yield

‖x(k + 1)‖. 6 exp{(µ.(A) + a)h}‖x(k)‖. +

∫ h−τ ′

0

exp{(µ.(A) + a)t}(‖B‖. + b)‖LKF‖.dt‖x(k−

d + 1)‖. + exp{(µ.(A) + a)(h − τ
′)}

∫ τ ′

0

exp{(µ.(A) + a)t}(‖B‖. + b)‖LKF‖.dt‖x(k − d)‖.

Assume that

z(k + 1) = exp{(µ.(A) + a)h}z(k) +

∫ h−τ ′

0

exp{(µ.(A) + a)t}(‖B‖. + b)‖LKF‖.dtz(k − d + 1)+

exp{(µ.(A) + a)(h − τ
′)}

∫ τ ′

0

exp{(µ.(A) + a)t}(‖B‖. + b)‖LKF‖.dtz(k − d) (9)

z(k) = ‖x(k)‖., for − d 6 k 6 0
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It is obvious that the following is satisfied

‖x(k + 1)‖. 6 z(k + 1)

Hence, asymptotic stability of z(k + 1) implies that of x(k + 1). Now we design state feedback gain K,

which makes z(k + 1) asymptotically stable. The characteristic equation of equation (9) is

λ
d+1 − exp{(µ.(A) + a)h}λd −

(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)(h − τ

′)} − 1)λ−

(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)h} − exp{(µ.(A) + a)(h − τ

′)}) = 0 (10)

Note that for µ.(A) + a < 0, the coefficients of equation (10) satisfy the conditions of Theorem 2,

therefore, system (9) is asymptotically stable if and only if

1 − exp{(µ.(A) + a)h}
(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)(h − τ )′} − 1)−

(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)h} − exp{(µ.(A) + a)(h − τ

′)}) > 0

i.e.,

(‖B‖. + b)‖LKF‖. < −(µ.(A) + a) (11)

Note that

(‖B‖. + b)‖LKF‖. 6 (‖B‖. + b)‖L‖.‖K‖.‖F‖. 6 (‖B‖. + b)‖K‖.

Thus, as long as the condition (‖B‖.+b)‖K‖. < −(µ.(A)+a) is satisfied, equation (11) must be satisfied.

It implies that for any invariant delay τ , (‖B‖. + b)‖K‖. < −(µ.(A) + a) is a sufficient condition for

the stability of system (8). Namely, the discrete system of system (1) can attain stable fault-tolerance

control. The theorem is proved. �

Corollary 1. For exp{(µ.(A) + a)} < α < 1, if

(‖B‖. + b)‖K‖. <
−αd(α − exp{(µ.(A) + a)h})(µ.(A) + a)

α − exp{(µ.(A) + a)h} + exp{(µ.(A) + a)(h − τ ′)} − α exp{(µ.(A) + a)(h − τ ′)}

then the characteristic roots of (10) satisfy |λ| < α < 1.

Proof. (10) can be rewritten in the form

α
d+1

(

λ

α

)d+1

−α
d exp{(µ.(A) + a)h}

(

λ

α

)d

−α
(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A)+α)(h−τ

′)}−1)

(

λ

α

)

−
(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)h} − exp{(µ.(A) + a)(h − τ

′)}) = 0

Next, the proof is similar to the proof in Theorem 3. If

α
d+1 − α

d exp{(µ.(A) + a)h} − α
(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)(h − τ

′)} − 1)−

(‖B‖. + b)‖LKF‖.

µ.(A) + a
(exp{(µ.(A) + a)h} − exp{(µ.(A) + a)(h − τ

′)}) > 0

then,

(‖B‖. + b)‖LKF‖. <
−αd(α − exp{(µ.(A) + a)h})(µ.(A) + a)

α − exp{(µ.(A) + a)h} + exp{(µ.(A) + a)(h − τ ′)} − α exp{(µ.(A) + a)(h − τ ′)}

Note that (‖B‖. + b)‖LKF‖. 6 (‖B‖. + b)‖K‖., hence, if

(‖B‖. + b)‖K‖. <
−αd(α − exp{(µ.(A) + a)h})(µ.(A) + a)

α − exp{(µ.(A) + a)h} + exp{(µ.(A) + a)(h − τ ′)} − α exp{(µ.(A) + a)(h − τ ′)}
(12)
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Then the characteristic roots of (10) satisfy
|λ|
α < 1, i.e., |λ| < α. Noting (12), α > exp{(µ.(A) + a)}

should be satisfied. The proof is completed. When |λ| < α < 1, that is, the discrete system (8) can

attain stable fault-tolerance control more quickly. �

4 Simulation example

We give an application of Theorem 3. Consider the system

A =

(

−3 0

0 −3

)

, B =

(

3 0

0 3

)

, ∆A(t) =

(

0.1 sin t 0

0 0.1 cos t

)

, ∆B(t) =

(

−0.1 sin t 0

0 −0.1 cos t

)

Since ‖∆A(t)‖1 6 a = 0.1, ‖∆B(t)‖1 6 b = 0.1, µ1[A(t)] = maxj{Re[aij(t)] +
n

∑

i=1
i6=j

|aij(t)|}
[12],

µ1(A)+ a = −2.9 < 0, we can consider the inequality (‖B‖1 + b)‖K‖1 < 2.9 or ‖k‖1 < 0.9355. Assume

K =

(

0.5 0.4

0.2 0.3

)

. The initial condition of this system is chosen at x(0) = (1 − 1)T and x(k) = 0 for

−d 6 k < 0. The values of τ and h are chosen arbitrarily. Suppose τ = 1.2s, h = 1s, we obtain d = 2,

τ ′ = 0.2s. Here only four cases for different L and F are shown in Fig. 2. From the simulations results

we see that the system with parameter uncertainties, sensor failures, actuator failures can attain stable

fault-tolerance control. For different τ , L and F , other cases simulated (not shown in here) also give

same conclusion.

(a) L = diag(1, 1), F = diag(1, 1) (b) L = diag(1, 0), F = diag(1, 0)

(c) L = diag(1, 1), F = diag(1, 0) (d) L = diag(0, 1), F = diag(0, 1)

Fig. 2 State response curves

5 Conclusions and perspective

In this paper, we use the matrix measure technique to study stable fault-tolerance control of

networked control system. Some Theorems are derived for stable fault-tolerance control of networked

control system with the network-induced delay, parameter uncertainties, sensor failures and actuator

failures. The example is presented to illustrate the effectiveness of these Theorems.
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To simplify the system analysis, a great deal of previous results are only limited to the case that

delay is less than a sample period or is only limited to a small interval. Expect for the premise that

delay is constant, there is no limitation in this paper, which makes the Theorem 3 very useful for NCS.

We will model an NCS that the delay is random or time-variant, and study the stability, the fault

detection and the fault-tolerance control.
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