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Abstract The optimal control problem for nonlinear interconnected large-scale dynamic systems
is considered. A successive approximation approach for designing the optimal controller is proposed
with respect to quadratic performance indexes. By using the approach, the high order, coupling,
nonlinear two-point boundary value (TPBV) problem is transformed into a sequence of linear de-
coupling TPBV problems. It is proven that the TPBV problem sequence uniformly converges to
the optimal control for nonlinear interconnected large-scale systems. A suboptimal control law is
obtained by using a finite iterative result of the optimal control sequence.
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1 Introduction

Many physical systems are composed of interconnections of lower-dimensional subsystems with

interconnections among them. It is unpractical to analyse and synthesize interconnected large-scale

systems with general control theories and methods, because that will lead to huge computation time

and memory. During the past few decades, the problem of analysis and synthesis for dynamic large-scale

systems has received considerable attention. Based on the characteristics of large-scale systems many

results on this subject have been proposed, mainly about modeling[1,2], stability[3], stabilization[4,5] ,

robust control[6,7], decentralized control[6∼8], hierarchical control[9], and so on. It is useful to reduce

computation through modeling and decomposition techniques, but the simplified computation often

brings a conservative result. Therefore, how to find a simpler analysis method or control strategy for

large-scale systems with a better result is faced by researchers. The optimal control problem of a general

nonlinear system always leads to a high order, coupling, nonlinear TPBV problem. But for the general

regulation problem of nonlinear systems, with the exception of simplest cases, they are impossible to

be solved analytically[12]. This has inspired researchers to look for some approaches to approximately

obtain the solution to the nonlinear TPBV problem as well as obtain a suboptimal feedback control for

nonlinear interconnected large-scale dynamic systems.

The main objective of this article is to address the problem of optimally controlling a nonlinear

interconnected large-scale dynamic system modeled as an interconnection of subsystems. A successive

approximation approach for designing the optimal controller is proposed with respect to quadratic

performance indexes. By using the approach, a high order, coupling, nonlinear TPBV problem is

transformed into a sequence of linear decoupling TPBV problems. We prove that the TPBV problem

sequence uniformly converges to the optimal control for nonlinear interconnected large-scale systems.

A suboptimal control law is obtained by using a finite iterative result of the optimal control sequence.

A simulation example shows that the successive approximation optimal control algorithm is effective.

2 Problem statement

Consider a nonlinear interconnected large-scale systems described by

ẋi(t) = Aixi(t) + Biui(t) + f i(x), t > t0
(1)

xi(t0) = xi0, i = 1, 2, · · · , N
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which can be decomposed into N subsystems, where xi ∈ Rni , ui ∈ Rmi are the state vectors and the

control vectors, respectively; f i : C1(Rn) → Ui ⊂ Rni ; Ai and Bi are constant matrices of appropriate

dimensions; x = (xT
1 , xT

2 , · · · , xT
N )T, n1 + n2 + · · ·+ nN = n. Assume that (Ai, Bi) are controllable and

nonlinear interconnected terms f i(x) satisfy the conditions described by

‖f i(x)‖ 6 c‖x‖, ‖f i(x) − f i(y)‖ 6 h‖x − y‖, ∀x, y ∈ Rn (2)

where ‖ · ‖ represents the form of vectors; c and h are known positive constants. The problem is to find

a control law that minimizes the quadratic cost functional described by

J =
1

2

N
∑

i=1

{

x
T
i (tf )Fixi(tf ) +

∫ tf

t0

[xT
i (t)Qixi(t) + u

T
i (t)Riui(t)]dt

}

(3)

where matrices Fi, Qi and Ri satisfy general linear-quadratic regulator conditions.

Applying the maximum principle to (1) and (3), the necessary condition of the optimal control

problem is described by

ẋi(t) = Aixi(t) − Siλi(t) + f i(x), t0 < t 6 tf

− λ̇i(t) = Qixi(t) + AT
i λi(t) +

N
∑

j=1

σijλj(t), t0 6 t < tf (4)

xi(t0) = xi0, λi(tf ) = Fixi(tf ), i = 1, 2, · · · , N

where Si = BiR
−1
i BT

i , σij = ∂f j/∂xi. The optimal control law can be described by

u
∗

i (t) = −R−1
i BT

i λi(t), t0 < t 6 tf , i = 1, 2, · · · , N (5)

(4) are nonlinear interconnected n-th order large-scale TPBV problems, which can be decomposed into

N subproblems, where nonlinear interconnected function vectors f i are the nonlinear relating terms of

nonlinear large-scale system (1). For general nonlinear function vectors f i, it is very difficult to solve

this problem accurately. On the other hand, even if the large-scale interconnected nonlinear TPBV

problems in (4) are theoretically solvable, the computation load can be extremely tremendous because

of large-scale system′s regular characteristic of high dimensions. Therefore, it is necessary to find some

approximate approaches for solving the nonlinear large-scale interconnected TPBV problems in (4).

3 Preliminaries

Consider the nonlinear interconnected time-varying autonomous large-scale system that can be

decomposed into N subsystems, which can be described by

ẋi(t) = Gi(t)xi(t) + f i(x), t0 < t 6 tf
(6)

xi(t0) = xi0, i = 1, 2, · · · , N

where xi ∈ Rni are state vectors, f i : C1(Rn) → Ui ⊂ Rni satisfy the conditions in (2), Gi(t) are

continuous time-varying matrices of appropriate dimensions.

Define the function vector sequence {x(k)
i (t)} as the solution sequence of vector integral equation

sequence described by

x
(0)
i (t) = Φi(t, t0)xi(t0)

x
(k)
i (t) = Φi(t, t0)xi(t0) +

∫ t

t0

Φi(t, τ )f i(x
(k−1)(τ ))dτ (7)

t0 < t 6 tf , i = 1, 2, · · · , N, k = 1, 2, · · ·

where Φi(t, t0) are state transition matrices of time-varying matrices Gi(t).

Lemma 1. The solution sequence of vector integral equation sequence (7) uniformly converges

to solution of time-varying nonlinear large-scale system (6).
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Proof. Consider {x(k)
i (t)} as a sequence in CN [t0, tf ]. From (7)

x
(1)
i (t) − x

(0)
i (t) =

∫ t

t0

Φi(t, τ )f i(x
(0)(τ ))dτ (8)

Letting a = sup
t06t6tf

‖Φi(t, t0)‖, b = sup
t06t6tf

‖x(0)(t)‖, and noting that f i satisfies inequalities in (2), we

can obtain

‖x(1)
i (t) − x

(0)
i (t)‖ 6

∫ t

t0

ac‖x(0)(τ )‖dτ 6 abc

∫ t

t0

dτ = abc(t − t0), t0 < t 6 tf , i = 1, 2, · · · , N (9)

Similarly, from (7), we obtain

x
(2)
i (t) − x

(1)
i (t) =

∫ t

t0

Φi(t, τ )[f i(x
(0)(τ )) − f i(x

(0)(τ ))]dτ, t0 < t 6 tf , i = 1, 2, · · · , N (10)

Moreover, from (2) one gets

‖x(2)
i (t) − x

(1)
i (t)‖ 6 ah

∫ t

t0

‖x(1)(τ ) − x
(0)(τ )‖dτ 6

ah

N
∑

j=1

∫ t

t0

‖x(1)
j (τ ) − x

(0)
j (τ )‖dτ 6 ah

N
∑

j=1

∫ t

t0

abc(t − t0)dτ 6

Na2bch
(t − t0)

2

2
, t0 < t 6 tf , i = 1, 2, · · · , N

By mathematical induction, we can obtain

‖x(k)
i (t) − x

(k−1)
i (t)‖ 6 Nk−1akbchk−1 (t − t0)

k

k!
, t0 < t 6 tf , i = 1, 2, · · · , N (12)

When k is sufficiently large, for any positive integer M , one gets

‖x(k+M)
i (t) − x

(k−1)
i (t)‖ 6

k+M
∑

j=k

Nj−1ajbchj−1 t − t0
j!

=

bc

Nh!

(

(Nah(t − t0))
k

k!
+

(Nah(t − t0))
k+1

(k + 1)!
+ · · · + (Nah(t − t0))

k+M

(k + M)!

)

6

bc(Nah(t − t0))
k

Nhk!

(

1 +
Nah(t − t0)

k + 1
+

(Nah(t − t0))
2

(k + 1)(k + 2)
+ · · · + (Nah(t − t0))

M

(k + 1)(k + 2) · · · (k + M)

)

6

bc(Nah(t − t0))
k

Nhk!

(

1 + Nah(t − t0) +
(Nah(t − t0))

2

2!
+ · · · + (Nah(t − t0))

M

M !

)

6

bc(Nah(t − t0))
k

Nhk!

∞
∑

k=0

(Nah(t − t0))
j

j!
=

bc(Nah(t − t0))
k

Nhk!
eNah(t−t0), t0 < t 6 tf , i = 1, 2, · · · , N

(13)

Inequalities in (13) imply

lim
k→∞

‖x(k+M)
i (t) − x

(k)
i (t)‖ = 0, ∀M > 0, t0 < t 6 tf , i = 1, 2, · · · , N (14)

This means that {x(k)
i (t)} is a Cauchy sequence in CN [t0, tf ]. Therefore, this sequence is uniformly

convergent. Since M is arbitrary, the limit of this sequence is clearly the solution of large-scale system

(6). The proof is complete.

4 Main results

We now consider a sequence of linear TPBV problems described by

ẋ
(k)
i (t) = Aix

(k)
i (t) − Siλ

(k)
i (t) + f i(x

(k−1)), t0 < t 6 tf
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− λ
(k)
i (t) = Qix

(k)
i (t) + AT

i λ
(k)
i (t) +

N
∑

j=1

σ
(k−1)
ij λ

(k−1)
j , t0 6 t < tf (15)

x
(k)
i (t0) = xi0, λ

(k)
i (tf ) = Fixi(tf ), i = 1, 2, · · · , N, k = 1, 2, · · ·

where f i(x
(0)) = 0, λ

(0)
i (t) = 0, σ

(k)
ij = [∂f j/∂xi]

xi = x

(k)
i

. And define the control vector sequence as

u
(k)
i (t) = −R−1

i BT
i λ

(k)
i (t), t0 < t 6 tf , i = 1, 2, · · · , N, k = 1, 2, · · · (16)

Theorem 1. The control vector sequence in (16) that satisfies linear TPBV problem sequence

(15) uniformly converges to the optimal control law u∗

i (t) for large-scale system (1) with quadratic cost

functional (3).

Proof. We first prove the solvability of TPBV problem sequence (15). When k = 1, from linear

TPBV problem sequence (15), we can obtain

ẋ
(1)
i (t) = Aix

(1)
i (t) − Siλ

(1)
i (t), t0 < t 6 tf

− λ̇
(1)
i (t) = Qix

(1)
i (t) + AT

i λ
(1)
i (t), t0 6 t < tf (17)

x
(1)
i (t0) = xi0, λ

(1)
i (tf ) = Fixi(tf ), i = 1, 2, · · · , N

This is a linear TPBV problem. Letting λ
(1)
i (t) = Pi(t)x

(1)
i (t), x

(1)
i (t) can be obtained from

ẋ
(1)
i (t) = (Ai − SiPi(t))x

(1)
i (t), t0 < t 6 tf

(18)
x

(1)
i (t0) = xi0, i = 1, 2, · · · , N

where Pi(t) is the unique semi-positive definite matrix of the following Riccati matrix differential

equation

Ṗi(t) + Pi(t)Ai + AT
i Pi(t) − Pi(t)SiPi(t) + Qi = 0, t0 6 t < tf

(19)
Pi(tf ) = Qf , i = 1, 2, · · · , N

From (18), we can obtain x
(1)
i . Therefore, we can easily obtain λ

(1)
i , f i(x

(1)) and σ
(1)
ij .

Assume that function vectors x
(k−1)
i (t) and λ

(k−1)
i (t) have been obtained in the (k−1)-th iteration.

Hence, we can easily obtain f i(x
(k−1)) and σ

(k−1)
ij . In the k-th iteration, from (15) we can obtain

ẋ
(k)
i (t) = Aix

(k)
i (t) − Siλ

(k)
i (t) + f i(x

(k−1)), t0 < t 6 tf

− λ̇
(k)
i (t) = Qix

(k)
i (t) + AT

i λ
(k)
i (t) +

N
∑

j=1

σ
(k−1)
ij λ

(k−1)
j , t0 6 t < tf (20)

x
(k)
i (t0) = xi0, λ

(k)
i (tf ) = Fixi(tf ), i = 1, 2, · · · , N

Note that f i(x
(k−1), λ

(k−1)
j and σ

(k−1)
ij are known. Therefore, (20) is a linear nonhomogeneous TPBV

problem. Let

λ
(k)
i (t) = Pi(t)x

(k)
i (t) + g

(k)
i (t), i = 1, 2, · · · , N (21)

Substituting (21) into (20), one gets a sequence of adjoint vector differential equations

ġ
(k)
i (t) = (Pi(t)Si − AT

i )g
(k)
i (t) − Pi(t)f i(x

(k−1)) −
N

∑

j=1

σ
(k−1)
ij λ

(k−1)
j , t0 6 t, tf

(22)
g

(k)
i (tf ) = 0, i = 1, 2, · · · , N, k = 1, 2, · · ·

and a sequence of state equations

ẋ
(k)
i (t) = (Ai − SiPi(t))x

(k)
i (t) − Sig

(k)
i (t) + f i(x

(k−1)), t0 < t 6 tf
(23)

x
(k)
i (0) = xi0, i = 1, 2, · · · , N, k = 1, 2, · · ·
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From (22), we can obtain g
(k)
i by reversing integral. Substituting g

(k)
i into (23), x

(k)
i can be obtained.

Therefore, we can easily obtain λ
(k)
i , f i(x

(k)) and σ
(k)
ij . We have proved TPBV problem sequence (15)

is solvable.

Secondly, we prove TPBV problem sequence (15) is uniformly convergent. According to Lemma

1, the solutions for the state equations in (23) and the adjoint vector differential equations in (22)

are uniformly convergent. Similarly, the solution sequence of TPBV problem sequence (15) uniformly

converges to the solution of large-scale nonlinear interconnected TPBV problem (4). According to (16),

{u(k)
i (t)} is also uniformly convergent, and uniformly converges to optimal control u∗

i (t), i.e.,

u
∗

i (t) = lim
k→∞

u
(k)
i (t) = −R−1

i BT
i bPi(t)xi(t) + lim

k→∞

g
(k)
i (t)c

(24)
t0 6 t 6 tf , i = 1, 2, · · · , N

The proof is complete. �

In fact, we can not obtain the solution of this problem in case of k → ∞. We may, in practical

applications, obtain a suboptimal control law by replacing k → ∞ with k = M in (24), i.e., consider

the g
(M)
i (t) approximately as its limit. Therefore, according to cost functional (3) an M -th order

suboptimal control law of large-scale system (1) is obtained as follows

uiM (t) = −R−1
i BT

i bPi(t)xi(t) + g
(M)
i (t)c, t0 6 t 6 tf , i = 1, 2, · · · , N (25)

Remark 1. Note that xi(t) in the first term of (25) is an accurate solution in case of k → ∞,

and only g
(M)
i (t) in the second term is replacing its limit with the M -th approximate result. Therefore,

suboptimal control law uiM (t) is closer to optimal control law u∗

i (t) than u
(M)
i (t).

A successive approximation process to obtain suboptimal control law (25) is proposed as follows.

Step1. Obtain the semi-positive definite matrices Pi(t) from the Riccati matrix differential equa-

tions in (19). Give a positive constant ε. Let k = 1, M = 1 and x
(0)
i (t) = g

(0)
i (t) = g

(1)
i (t) = 0.

Step2. From (18), we obtain x
(1)
i . And then λ

(1)
i , f i(x

(1)) and σ
(1)
ij are obtained. Get ui1(t)

from (25) and J1 from (3). Let k = k + 1.

Step3. Letting M = k, we find g
(k)
i from (22). Get uiM (t) from (25). Calculate JM according to

(3).

Step4. If
∣

∣

∣

JM − JM−1

JM

∣

∣

∣
< ε, then stop and put out the suboptimal control law uiM (t).

Step5. Obtain x
(k)
i from (23). Consequently, λ

(k)
i , f i(x

(1)) and σ
(k)
ij are obtained. Letting

k = k + 1, go to Step 3.

Remark 2. According to Lemma 1, terminal time tf of the cost functional (3) may be as long

as possible. In practical control systems, we may consider tf → ∞ when tf is large enough. Therefore,

this approach is also applicable for the case of tf → ∞. Cost functional (3) becomes

J =
1

2

N
∑

i=1

∫

∞

t0

[xT
i (t)Qixi(t) + u

T
i (t)Riui(t)]dt (26)

Accordingly, the following algebraic Riccati matrix equation is used instead of the Riccati matrix

differential equation (19).

PiAi + AT
i Pi − PiSiPi + Qi = 0, i = 1, 2, · · · , N (27)

where the solution Pi is a unique positive definite constant matrix.

5 Example

Consider the two order nonlinear composite system described by

ẋ1 = x1 + u1 − x3
1 + x2

2

ẋ2 = −x2 + u2 + x1x2 + x3
2 (28)

x1(0) = 0, x2(0) = 0.8

The cost functional is J = 1
2

∑2
i=1

∫

∞

0
(x2

i + u2
i )dt.
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Note that A1 = B1 = B2 = 1, A2 = −1, Q1 = Q2 = R1 = R2 = 1, f1(x) = x2
2 − x3

1, f2(x) =

x1x2 + x3
2. From Riccati equations in (27), we can obtain P 2

1 − 2P1 − 1 = 0, P 2
2 + 2P2 − 1 = 0. We get

P1 = 1 +
√

2, P2 = −1 +
√

2. According to the approximation approach, when k = 1, substituting P1,

P2 and the initial conditions of system (28) into (22), one has

ġ
(k)
1 (t) =

√
2g

(k)
1 (t) − (1 +

√
2)(x

(k−1)2

2 − x
(k−1)3

1 ) + 3x
(k−1)2

1 λ
(k−1)
1 − x

(k−1)
2 λ

(k−1)
2

ġ
(k)
2 (t) =

√
2g

(k)
2 (t) + (

√
2 − 1)(x

(k−1)
1 x

(k−1)
2 + x

(k−1)3

2 ) − 2x
(k−1)
2 λ

(k−1)
1 + 3x

(k−1)2

2 λ
(k−1)
2 (29)

g
(k)
1 (∞) = g

(k)
2 (∞) = 0, k = 1, 2, · · ·

We can obtain g
(k)
i from (29). And from (25) we get

u1k(t) = −(1 +
√

2)x1(t) + g
(k)
1 (t)

(30)
u2k(t) = −(1 +

√
2)x2(t) + g

(k)
2 (t), k = 1, 2, · · ·

When k = 1, 2, 3, the simulation curves of u1(t), x1(t), u2(t), x2(t) are shown in Fig. 1.

Fig. 1 Simulation curves of the system when k = 1, 2, 3

Fig. 1 clearly shows that the more iterative steps, the higher control precision. After the third time

of iterative control, we can obtain the cost functionals of composite system (28) J1 = 0.7833, J2 = 0.6070

and J3 = 0.5365. Obviously, J1 > J2 > J3. If ε = 0.15, |(J3 − J2)/J3| .
= 0.1315 < ε. That is, the

control precision can be satisfied after 3 times of iteration. Therefore, we can take u = [u13 u23]
T as

an approximate optimal control law of this composite system.

6 Conclusion

The main result of this article is to develop a successive approximation approach of optimal control

for nonlinear interconnected large-scale systems. By using the approach, we have transformed a high

order, coupling, nonlinear TPBV problem into a sequence of linear decoupling TPBV problems. The

TPBV problem sequence uniformly converges to the optimal control for the nonlinear interconnected
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large-scale system. A suboptimal control law has been obtained by using a finite iterative result of

optimal control law sequence. A simulation example shows that the successive approximation optimal

control algorithm is effective.
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