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Abstract Visual surveillance in dynamic scenes 1s an active research topics in computer vision,
The aim of visual surveillance is to make it possible that the computer can watch or monitor a
scene by automatic localization, tracking and recognition ot moving objects and semantic interpre-
tation ot their behaviors in the watched scene. This paper aims to realize a task-specific traffic sur-
veillance system which consists of modules for camera calibration, mode! visualization, pose re-
finement, tracking, trajectory-based semantic interpretation of vehicle’ s behaviors, ete. In this

paper, we describe each module to give readers a comprehensive view of a visual surveillance sys-
tem, and also discuss possible further work.

Key words Visual surveillance, pose relinement, wire-frame model, semantic interpretation,
tracking filter

1 Introduction

Visual trattic surveillance tries to make it possible that the computer can automatically
localize, recognize and track the moving vehicles in image sequences by the analysis of the
image sequences captured by cameras from wide-area, real-world scenes in natural condi-
tions. Furthermore, the computer can interpret the motions and behaviors of the tracked
objects based on the tracking results, and finally, give semantic descriptions. All of these
will be very helpful for not only regular traftic management, but also instant response
when abnormal situation happens in the watched scene. In the last two decades, visual
surveillance has attracted much interest in the area ol computer vision because of its tre-
mendous application prospect- ™.

However, it remains elusive to build a general-purpose computer vision system which
can work under a variety of scenes, Experience suggests that it should be possible to build
a task specific system by exploiting task-based a priori knowledge. In this paper, we dis-
cuss visual surveillance in traffic scenes where specific knowledge i1s exploited, including
three-dimensional geometric descriptions of individual vehicles, vehicle motion models,
and some reasonable assumptions or constraints, such as the ground-plane constraint
(GPC)*, the weak perspective projection assumption‘®, et al. All of these can provide
explicit guidance for localization, recognition and tracking, and can significantly simphiy
the problem and reduce the computational complexity.

In most traffic scenarios, the target objects are known and three-dimensional geomet-
ric descriptions for these objects can be established in advance through measurement, CAD
modeling or computer vision techniques (i. e. , structure from motion®').

In conventional approaches, the image 1s first analyzed to extract global image fea-
tures (such as straight lines), and then they try to establish the correspondence between
the image features and the model features'’'. It is far from trivial because a search through
all possible correspondences among image and model features 1s unpractical, especially

when a large number of irrelevant image features are present-*!. However, top-down ap-
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proaches with hypothesis driven scheme can successfully avoid the feature correspondence
problem, as the matching can be implicitly determined as a byproduct of the hypothesis"®.
In the past decade, we have developed a 3-D model-based visual tratfic surveillance

System[4,5.9~14]

which 1s based on hypothesis driven vehicle tracking algorithms. In this pa-

per, we present a brief introduction of the system and some recent new steps on it,

System overview

The work described in this paper 1s
a vision-based vehicle tracking system
for automatic identification and descrip-
tion of the behaviours of vehicles within
traffic scenes. A schematic diagram ot
the system 1s shown in Fig. 1. We as-
sume that the camera 1s static and cali-
brated. We also assume that 3-D wire-
frame models of vehicles have already
been established as part of the task spe-
cific knowledge. In our system., image
sequences captured from a CCTV cam-
era are first input into the motion detec-
tion module to identify image regions
where significant motion occurs. These
regions are called regions of interest
(ROI) because they are likely to contain
road vehicles. For each detected ROI in
a specific frame, either the predictive
tracking module or the pose initializa-
tion module i1s activated according to
whether 1t 1s occurring for the first
time. An initial pose for the vehicle 1n
the ROI 1s generated in both cases,
which is further relined by the pose re-
finement module to deliver the final
tracking result. The tracking results are
the start point of our high-level sub-sys-
tem which will give semantic descrip-
tions of the behaviours of vehicles. The
geometrical results provided by the low-
level tracking sub-system are first con-
verted to motion concepts, and then dif-
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Fig.1 System diagram

ferent concept patterns are recognized as action by action model and high-level reasoning.
In our system, the final aim is to obtain natural language descriptions for a surveillance

scene. Some of the recognized actions are selected to output, and the system generates

natural language sentences by some grammar rules.

This paper concentrates on some of the new steps and ideas which are recently presen-

ted in our surveillance system, though advances in other parts of the system have also been

made. In Section 2, we discuss the illumination invariant motion detection algorithm a-

dopted in the system, where a Gaussian process is used to model every pixel on the back-
ground image. Section 3 presents a camera calibration method which 1s very convenient for

traffic scene. Based on the calibration result provided by the method, we improve our
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model visualization module. In Section 4, we discuss and compare two pose evaluation
functions. An improved EKF with a vehicle motion model is proposed for predictive track-
ing, which can reduce the filter s sensitivity to the model uncertainty. Section 6 talks a-
bout a simple trajectory based behaviour interpretation algorithm. Some experimental re-
sults are given in sections where the relative algorithms are discussed. We also present o-
verall results of the whole system in Section 7. In Section 8, we draw a conclusion and list
the future work. Further details of the system may be found in our previous work! =)

2 Motion detection

Robust and efficient motion detection i1s an important preprocessing step to solve many
problems in the area of computer vision including visual surveillance. One of the widely
used approaches to this problem i1s background subtraction which assumes that the back-
ground 1mage describes the stationary portion of the scene, and moving objects can be i-

dentified as those regions of pixels in the image that differ signiticantly from the back-

ground.

In the past twenty years, color or intensity based approaches!®''*

(37,181

and range based ap-
are proposed for change detection. In | 19 ], the authors integrate the range
and color cues into change detection. Because range based algorithm is limited to multi-
view image sequences as the range information is usually obtained by stereo vision, color
or grayscale based approaches are more suitable for monocular vision applications. The al-
gorithm presented in this paper is precisely of this kind.

To establish a change detection framework that is flexible to deal with variations in
lighting and the presence of moving shadows, we tirst use illumination invariant character-
1stics to describe the model of background. After this, the connectivity information is inte-
grated into the background-foreground classification operation using Bayesian rules.

The basic steps of background subtraction algorithm include background modeling and
pixel classification.

2.1 Background modeling

In our approach, we combine color cues and brightness information to construct a sta-
tistic background model. The color components in our approach are preprocessed by homo-
morphic filtering to avoid the influence of lighting changes. Generally, the scene illumina-
tion varies smoothly over space and locates at low frequency part in frequency domain. In
addition, reflection components locate at relatively high frequency part. According to this,
we can separate them by homomorphic filtering.

In Fig. 2, we can find that significant difference can be seen between the background
and foreground 1n the reflection images.

Assume that the pixel process belonging to the background is a set of Gaussian
processes. Every background image pixel 1s modeled by a 4-tuple (Eg y0rsl50,7 s where Ey
denotes the expected illumination invariant color vector [ Err Erg Ertb ]|, 6,=10, o, 04>
[ 1s the brightness component and ¢, denotes the standard deviation of /.

proaches

(a)the original image (b)the red reflection component (c)the green reflection component  (d)the blue reflection component

Fig. 2 Color reflection components
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To estimate these parameters, the method which has been proposed in our previous

work'? is employed. For example, Fig. 3 shows an estimated background image for the
left highway scene.

Fig. 3 Background acquirement

2. 2 Pixel classification

In our approach, the connectivity information is integrated into this step, because
most moving objects always manifest themselves as compact connected regions.

First, we use a simple threshold operation: a pixel in the current image 1s ‘ fore-
ground’, if the pixel has significant difference of reflection characteristics from the values
in the reference image; it is selected as ‘background’, if the pixel has similar reflection
components to the same pixel in the background image. After this step, pixels in the cur-
rent image have been roughly divided into ®background’ and ‘foreground’.

Then, we automatically select a threshold for every pixel in current image by integra-
ting the connectivity constraint into classification. The main i1dea is based on the percep-
tion that the possibility of a pixel belonging to ‘foreground’ will increase 11 the number of
its neighbors belonging to ‘foreground’ increases. The detailed information can be found in [ 9 ].

3 Camera calibration and model visualization

In our 3-D model-based tracking system, camera parameters are necessary for the 3-D
model to project onto the image plane. Although camera calibration is a classic problem 1n
computer vision and there have been many methods for this problem, but, almost all of
them are not very convenient to use in traific scenes. We try to use a simple but convenient
calibration tool, In our system, we first obtain the homography H between the ground
plane and the image plane by some corresponding points between these two planes, Then.,

we use the height of the camera (h) and some lines which are vertical to the ground plane
to calibrate the camera.

. . . R t-
For a pin-hole model, the project matrix is M= A - [0 | furthermore the homog-
raphy between the ground plane and the image plane should be

H=A{rh ro tl=[h h, h;] (1)
where A is the camera's intrinsic parameter matrix, r, ,r, and r; are three column vectors
of rotation matrix R, and ¢ 1s the translation parameter.

We can obtain the homography H up to scale if there are more than four pairs of cor-
responding points between the ground plane and the image plane.

Constraint 1

It the coordinate of optical center 1s (x,» y.s h), we have

xh, +vyh, + K+ h; =0 (2)
where K:hAI'3.
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Constraint 2
Given a line [” which 1s vertical to the ground plane and its projection / on the image
plane, we can find that line H'/ 1s on the ground plane and goes through the point (z,, y., 0).
According to these two constraints, given the height of camera and two vertical lines,
we can calculate x., y, and K. Then, we can further calculate all the camera parameters.

In fact, during our model wvisualization
process, it 1s not necessary to calculate individual
parameters. We use the following steps to visualize
the 3-D models as described in Fig. 4.

Step 1. Set (x., v., h) as the perspective cen-
ter and project the models onto the ground plane.
For any point in world coordinate system (x, s Vo s
2. ) » the projection on the ground plane can be cal-
culated as

(Icgy“(})

Fig. 4 Model visualization
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We also should check the visibility of each model line at this step.

Step 2. Map the model’s projection on the ground onto the image plane by the homog-
raphy H. The mapping result 1s the final visualization of the model.

This method can avoid the additional error brought by the process of estimating indi-
vidual camera parameters.

4 Vehicle localization and tracking

Vehicle localization and tracking is the basis of the visual tratfic surveillance system,
and it can heavily affect the performance of the system in terms of efficiency, accuracy,
and robustness., The goal of vehicle tracking is to determine the dynamic states of the vehi-
cles in every frame.

Tracking can be cast as an attempt to find the optimal estimation of the state in a dis-
crete-time dynamic system. Let X, be the state of the object and I, the image at time ¢.
Then tracking is to estimate the current state X,, given the images from time 1 to time ¢
I,..={I,,i=1,2,---,t}. Note that X, is a general concept that could contain various infor-
mation ot the object, e. g. position, translational or angular velocity, acceleration and
shape.

From the Bayesian point of view, it is required to construct the a posteriori probability of

X, :
pCX, | 1I,,)=pCIL | Xpp(X, | I,,-)/pC L | I.1) (3)

As shown in Equation (3), there are two main problems to be resolved: 1) how to es-
timate the image likelthood p( I,| X,), namely to evaluate the match quality between the
state of the object and the current image data (in this paper, the state can be substituted
with the pose and this problem can be called pose evaluation for short) ; 2) how to estimate
p( X, |1,.,—-,), namely to predict the current state according to the last ones. In fact, the
probabilities in Equation (3) are hard to be directly computed but can be estimated by oth-
er metrics.
4.1 Pose evaluation

Methods for pose evaluation differ in the selected properties of the object and the 1m-
age cues, There are mainly four classes for pose evaluation: feature-based, blob-based, ac-
tive contour and shape model-based methods. The feature point based method try to find
the correspondence between some primitives (e. g. points, line segments or corners) in the
current and the former frames-*'#!, The blobs related with the moving objects are used by
the blob based method, which has close relationship with the methods of background sub-
traction**’, The active contour-based method focuses on the contour information of the
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object and establishes corresponding energy model-**!.

As mentioned in Section 1, visual traffic surveillance is a specific problem and many
useful constraints and a prior knowledge can be exploited to simplify the problem of object
localization. One of the most important a prior knowledge 1s the skeleton information of
the vehicle, which can be expressed by a 3-D wire-irame shape model. In this paper, we
use a 3-D shape model-based method. We establish several 3-D wire-frame models of the
vehicles otf-line. For a given pose. we project the 3-D shape model onto the 2-D image
plane and evaluate the matching between the projection and the local image data (see Fig. 5).

object vehicle

projection of 3-D model

Fig. 5 Projection of 3-D model and the object vehicle

Generally, compared with 2-D methods, the 3-D model-based method can:

1) Utilize more a prior information to provide more accurate localization;

2) Directly and accurately determine the pose ot the watched object in the 3-D world;

3) More robust against the changing of illumination, occlusion and clutter.

In model-based tracking, the key problem is pose evaluation. An intuitive i1dea 1s that
first line segments in the image are extracted and then the given pose is evaluated by build-
ing up correspondences between these line segments and projection of the 3-D model® %,
However, this method is of high computational cost and sensitive to clutter. In this paper,
we adopt a hypothesis driven strategy and directly use the image information (e, g. gradi-
ent and edge point) to avoid line segment exaction.

In our visual surveillance system, we adopt two methods for pose evaluation: 1) the
Iconic method proposed by Brisdon'*®’, which is based on gradient magnitude; and 2) the
PLS (Point to Line Distance, similar to Chamfer distance!’”’) method proposed by us,
which 1s based on a topological distance between the image edge points and the projected
model line segments. In addition, Liu et al."* compare the two methods and find that the
Iconic method 1s much faster and the curve of the PEF (pose evaluation function) of the
PLS method is much smoother. For the sake of self-containedness. the following will out-
line the two methods.

a) Iconic method

The 3-D vehicle model is first instantiated at the given pose, and a set of visible line seg-
ments (L, L., *= 4+ L, ) 1s obtained. As

shown 1n Fig. 6, along a visible line segment o o .
L,(k=1,2,++,n), several normals (N, " . 1 g’u_&? ",

Ny o=+ N, ) are taken at equal interval Zo. E*[—*: """"""""""""" *'; ’y—0
For each normal, let § be the interval of the '—i‘_'———'—'# wla) ;
sampled points on each normal, and e(v) = : :-s_ ----------- ;E# +o
| ICv—206/2) — I (v1+6/2)| the absolute ¢ ¢ @ 27 =80 )

value of the discrete derivative of image
intensity ,where v& {p— 88, , u 1T 88 .
Feature score e, is computed as:

e, — ;%Z Ee(v)w(v;;l) (4)
= |

T

Fig. 6 Calculation of normal score and feature score
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where w(a) =exp(—a®/2) is a Gaussian window.

[28]

Under an assumption ot a linear relationship**®, it is easy to convert e, into the log-P-

value:

logP(ek) — max[O E,BL(:E) + aroe fi‘?'k] (5)
where P(e,) 1s the probability that a line segment of the same length as L (k) randomly
placed on the image produces a feature score no less than e,. Evaluation fuction is defined
as

E=—2)> logP(e) (6)

k=1
Under the assumption of the visible line segments’ independence, E has a xz distribu-

tion with 2n degrees of ireedom. The higher the score,
the better the match (or the more accurate the given

= henoswne
&

O . E pose).
b, 5 b) PLS method
u Given a point a and a line segment L specitied by
Fig.7 PLS distance two end points b, and b, , their PLS distance i1s defined as
follows (see Fig. 7).
;l, ifﬁ-m>03nda-m>0
D(a,l) = <g€n!1irf1 | |E3l , otherwise (7

Given a set of edge points in a ROI (region of interest) I={1I; ;} and a set of visible
line segments of the projected model L={L,|1<{p< N}, pose evaluation function in PLS
method 1s:

H(I,L) = » min(W,, DI, ,,L,))7 (8)

where W, ,=|R,Q.. .| is the weight vja‘lue (Q,. ; is the unit gradient direction of I, , and R,
the unit normal vector of the projected model line segment L, ).

Fig. 8 shows a real world scene for test (a) and the corresponding curves of PEFs
(Pose Evaluation Function) of the two methods. From experimental results and our previ-
ous comparative work''?!, we can learn that: 1) the computational cost of the Iconic meth-
od 1s much lower than that of the PLS; 2) the PEF surface of the PLS method is much
smoother than that of the Iconic, which is helpful tor refinement; 3) Iconic and PLS have
stmilar abilities of localization; and 4) the peaks ot both Iconic and PLS are not conspicu-
ous enough under serious occlusion.

PEF of iconic o™i PEF Ol PLS o™ g 4835
1 Oy TORR Tl R S P g el
0. 8 i ’ 0. 8 | i 552
0. 64- 0.

0. 41]- 0.
0. 2 \ 0.
10 5 5 10
—100=10 7 A
(b)

Fig. 8 (a) A real world scene image (the white ellipse indicates the object); (b) the curve of
PEF of the Iconic method; (¢) the curve of PEF of the PLS method

4.2 Pose initialization
The iterative process of pose refinement always starts from an initial pose. The initial
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pose 1s important because 1t could heavily altect pose refinement., During the tracking
process, the initial pose can be provided by the prediction module of the tracking filter.
For a new object, it is hard to estimate its initial pose. Sullivan et al. use the correspon-
dence between the extracted line segments in the image and the 3-D model"’). However es-
tablishing correspondence 1s always expensive computationally., We have improved this
method " and reduced the computational cost at the same time.
4.3 Pose refinement

Given a PEF and the initial pose, pose refinement is a standard optimization problem.
The adopted strategy tor pose refinement is important and can strongly affect the perform-
ance of the whole system in terms of efficiency. accuracy and robustness.

In our system, because vehicles always move on the ground plane, GPC (Ground
1. So the number of degrees of freedom (dof) of a vehi-
cle 1s reduced from 6 to 3 and the pose P of the vehicle 1s comprised of translational param-
eters X, Y and one rotational parameter §. For further reducing computational cost, WP
(weak perspective assumption) 1s adopted here, which 1s valid in most tratfic scenes. Un-
der GPC and WP, we have demonstrated™®’ that motion of vehicles can be decomposed into
two independent motions both in the 3-D world and the image plane. translation and rota-
tion. So we can use the Newton method to update the translation and rotation parameters
alternatively to obtain a best pose.
4.4 Vehicle tracking

For an autonomous visual tralfic surveillance system, the ability to track and predict

Plane Constraint) is applied here

the vehicle motion 1s important. First, because of the presence of noise and inaccuracies in
image data and object models, the observed pose 1s often noisy. A filter is needed to obtain
a smooth estimation of the tracked vehicle's motion parameters for semantic interpretation
in high-level vision. Second, the predictive properties of the filter can be used to get an es-
timation of pose for the next frame based on the measurement of the preceding frames. An
accurate prediction can simplily the measurement process and reduce the computational
cost of searching in the object localization modules. In general, the accuracy of tracking
and prediction depends on the structure of tracking {ilters that contain the dynamic model
for the vehicle motion.

We model the vehicle motion as a fifth-order dynamic process with the state vector
X=[x,v,v,6, $]', where [,y ]" is the position of the vehicle on the ground plane, v is
the velocity of the rear wheel, 4 is the orientation of the whole vehicle, ¢ is the ortentation
of the front wheel. The dynamic equation and measurement equation can be described as
follows which 1s deduced from a physical dynamic model shown in Fig. 9 (named bicycle
model of vehicle motion) .

vy S

front wheel

Yd,

vehicle centroid
(xvy)

rear wheel

-

Fig. 9 The bicycle model of vehicle motion
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In this dynamic model, a and & are used to describe the behavior of the driver, a re-
flects the driver’'s press on the accelerator or the brake, or changing the position of the
gear; b retlects the turn of the steering wheel., Our dynamic model 1s more realistic and ac-
curate than that of Koller et al. "™ and Maybank et al. '**],

There are two main classes of filter widely used in visual tracking problem: one is
Kalman filter'” and the other is Monte Carlo filter (e. g. CONDENSATIONY)), Kalman
filter is faster than Monte Carlo filter, however, it require a very precise motion model
which does not always hold because that the maneuver of a driver is very hard to model, It
also assumes that all the noise 1s white noise. Monte Carlo filter does not hold this limit,
however, its accuracy depends on the number of the sample particles, and thus it has high
computation cost and not suitable for 3-D model based real time tracking.

In our system, in order to implement real time tracking, we adopt EKF (extended
Kalman filter). In order to reduce the sensitivity of the filter to the model uncertainty, we
modify the EKF by adding a new optimizing objective function. The idea 1s that once the
model has changed, the residual error series would change immediately, and then we adapt
the filter to the orthogonality condition (just like White Noise) in order that the filter's es-
timated states can track the system's real states quickly and accurately. If the model’s pa-
rameters match the real system, the orthogonality condition will be self-satisfying for the
EKF. But if the model changes over time, the traditional EKF's residual errors do not sat-
isty the orthogonality condition, and they reflect the instability of the model parameter.
Because the measurement noise 1s assumed as White Noise, the residual error process
should be White Noise. We adapt the filter to make sure that the residual error series has
the similar characteristic with White Noise in order that the estimated states of the filter
can track the system’s states as quickly as the system's parameters change. This is a-
chieved by using a fading parameter-'®’,

Experimental results show that our new filter is much more robust when the vehicle's
motion behavior changes suddenly. In Fig. 10 (a), our filter has better performance than
traditional EKF. From Figs. 10(b) and (¢), we can {ind how the fading parameter works
when dramatical changes of velocity made by the driver. However, it 1s still inevitable that
our new filter also needs Gaussian noise assumption and its robustness against outliers and
non-(Gaussian notise is similar to that of common Kalman filter.
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Fig. 10 The result of sequence 11

5 3-D wire-frame model

As shown in Fig. 11, we use 3-D wire-frame model to depict a saloon. This model can
describe the skeleton properties of a vehicle well and provide valuable information for pose
evaluation.

In addition, data structure storing the model in computer memory should be designed
carefully to obtain a quick projection process. As shown in Fig. 12, we use facets as the

Fa;et Cc;wex | X
| Index | Num. I—_'[ 1 : X
1 5 » 9 X
2 5 [ ™ 3 J. X Y
4 X, | Y, Z,
5 ] }g_ﬁ F Yj Zﬁ
0
--""‘-H..___ I ‘—'_l-'*r |
~ e N
~ 2 77N 5 e
rd ]\ e f,}a
\z Coordinates of N = —— ,
_ H\/ // // centroid of model 68 O 10 O
It Bt yd Special line L
R“"--n..,__“ /\\ segment list _.IF
NN A .
i - .

Fig. 11 3-D wire-frame model of a vehicle Fig.12 Data structure of the 3-D model
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main index elements and each facet consists of several vertexes, This strategy aims at de-
creasing computational cost, because visibility checker (the main component in projection
process) 1s based on judging the relationship between two facets. The 3-D wire-frame
model can be obtained by hand or SFM (structure from motion) method'®.

6 Semantic interpretation of vehicle's behaviour

Semantic interpretation plays a very important role in our surveillance system. An ad-
vanced visual surveillance system should be able to interpret what is happening 1n the dy-
namic scene, raise warning if some abnormal events occur, and also predict future actions
of the tracked targets. In our visual surveillance system, low level tracking algorithms de-
scribed above will provide the trajectories of moving targets in the watched scene.
6.1 Trajectory classification

Trajectory pattern analysis which can automatically classify the trajectories into sever-
al patterns is an important way for activity interpretation. We can often analyze the activi-
ties of the tracked target by analyzing the target’s route, speed and other dynamic informa-
tion contained in the target's trajectory. In our system, we designed a classification tree as
illustrated in Fig. 13 with three layers. We use spatial information to cluster trajectories
and then use dynamic information to classify the trajectories in every cluster into classes.
Identical clustering algorithms are used in these operations.

All trajectories

Clusters in spatial
information level

.-"Ill
.'IIFI/
Classes in dynamic /
- . /
informafion level
.-'IIIIIIIl
Class No.3 Class No.2 Class No.3

Fig. 13 Classification tree

How to measure similarity between two trajectortes is the first problem we should
tackle before we can analyze the trajectory's spatial and dynamic information. In [30], the
authors utilize the percentage ot overlapped pixels to measure similarity between trajecto-
ries, and an 80% overlap is assumed to identify the same trajectory class. It can be regar-
ded as a global trajectory classification, but a simple threshold will sometime fail because
of noise in the trajectory which is provided by a tracking system. After all, there are some
open problems in visual tracking such as occlusion.

We define a distance formulation to measure the spatial similarity between trajectories
which is similar to Hausdorf{f distance. This distance can be considered as global informa-
tion of trajectories. Given two trajectories A and B, where A has 7 points and B has T
points, their spatial distance D, can be defined as:

D{_. = m.ll'l{D_,q,B ,DB__,q} (1]_-':1)

A, B
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|

max { min (d;;); (11b)

i=0.evat j=0. T

Dy.4a = max { min (d; )} (11c)

F= 0o T =0 eee a2
where d; ; is the Euclidean distance {from the position of point 7 in one trajectory to point j

in the other trajectory.

We also define a metric described below to measure similarity of trajectories dynamic
information.

D, = IE};]{DV_A,H DV 4} (12)
where |
2 dv;.;
DVﬂ_B __ el ;Zinil , ]‘ _ aﬁ%}gl;n(dff)
2 dv; ;
DV, , = #ub , 7 = arg min(d,; ;)
T +1 = < ’

And dv; ; i1s the difference from the speed of point 7 in one trajectory to point j in the
other trajectory.

Based on these similarity measurements, we use a C-Mean like clustering method to
learn the activity patterns (See [ 14 ]).

In Fig. 14, we demonstrate our algorithm 1n a real world scene,and 6 classes of 14
learned classes are listed.

Fig. 14 Some trajectory classes

6.2 On-line classification

For every new input trajectory, Bayesian classifier 1s implemented to do the classifica-
tion. Here, we denote the distance from one point in a trajectory A to the corresponding

point in the representative trajectory as d;—= min (d; ;). In addition, we assume that these

| < < T

d:.yi=1,+,t, satisfy Gaussian distribution. This assumption is reasonable when the two
trajectories belong to the same class. Furthermore, the joint probability density 1s

plalby= || pcaz |k (13)

=1

where p;(x|k) is the Gaussian distribution density of point x in a trajectory which belongs
to class £. The parameters of these Gaussian distributions can be estimated by calculating
the scatter matrix in each cluster. The post probability density will be.
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P(k) » p(x | k)
D P (k) « plx | k)

all &
where P (k) is the prior probability of class £, and can be substituted by the frequency of

the class among all samples.
6.3 Natural language description

We introduce a simple grammar to generate natural language descriptions from the ac-
tivity patterns of tracked targets which have been recognized. Because in most surveillance
scenarios, the system is often asked questions like “Who does what at where? And How?”
To design a system which can answer such questions needs only a simple grammar rule.
The rule 1s:

(The Obj ) (Action) in (The place name) | at (high/low/middle) speed |

We integrate the map of the real scene with the activity map to fill the place name and
also to establish mapping from activity to language (also called Verb selection). A typical
rule like this, if target stops in the parking lot, then output action as “is parked”.
6.4 Limitations

The above interpretation algorithm is not suitable to apply in a crowd scene, because
the trajectories will fill the whole scene and it is very difficult to learn the typical trajectory
classes. This algorithm can not handle the interactions of several targets for lack of model-

ing the parallel actions. We are currently working on a new framework to handle these
complex situations, and will be described 1n our latter publications.

pk|lx)= (14)

7 Experimental results
7.1 Demo platform

In our lab, we established a traffic demo platform which provides a test bed for our
visual surveillance research. With this model scene, we can simulate accidents on this plat-
form which are very difficult to capture in real tratfic scenes.

Fig. 15 shows the traffic model scene in our demo platform which is a typical intersec-
tion. Two toy radio-controlled cars can simulate many tratfic events.

......
.......
N

Fig. 15 The whole view of our demo scene

Some results on this demo platform are presented in Fig. 16, where the vehicle enters
behind the left bottom building and turns left. The vehicle 1s tracked and overlapped by its
3-D wire-frame model very well at a speed of 17 frames per second. The whole sequence is
presented on www. sinosurveillnace. com/yjcg2. htm.
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Fig. 16 A tracking result on our demo platform

7.2 Real world tracking

To demonstrate the algorithms, we also implemented them on some real world
scenes., Here, we present a CASIA scene. In this scene, a black saloon i1s tracked. Al-
though the car contains distinct intensity from the background, however, the skeleton of
the car is not clear yet because all parts of the car are black. As we know, the perspective
behind 3-D wire-frame model based algorithms is that vehicles can be presented by their
skeletons intuitively. Thus, it is a big challenge for a wire-frame model based method to
track a car without clear skeletons like this sequence. Fig. 17 shows a result trom this
scene, where the performance is quite good and the semantic interpretations are shown at
the bottom of the tracking window.

Both of the sequences from the demo scene and the real world scene in Figs. 16, 17
demonstrate that all algorithms provided above can work together and obtain a good per-
formance on efficiency, accuracy and robustness.

3 i A A e e e R R s S e el e T o A L
;?W R i : TR W ;

Fig. 17 A real world sequence from CASIA scene
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8 Conclusions and future work

Visual traffic surveillance is an active research topic of great social importance. In this
paper, we give a brief introduction of our surveillance system. In recent years, we have
made many progresses on vehicle surveillance including motion detection, pose evaluation
and refinement, an improved EKF {for predictive tracking and high-level behaviour recogni-
tion., We also have developed a demo platform for further research which can work at a speed
of 17 frames per second on a computer with PIV 1. 7G CPU and Windows operating system.,

However, there are still some open problems. For an example, we found that all ex-
iIsting pose evaluation tunctions fail when the target i1s seriously occluded or under some
structural outliers?®, In the near future, we try to integrate region information and con-
tour information in pose evaluation, and continue our high-level research and construct a
new high-level {ramework.
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