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Duality and Neural Networks for Solving Linear Programming!’

TIAN Da-Gang

(College o f Management, University of Shanghat Science and Technology, Shanghai 200093)
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Abstract By means of new theorems on duality, a sort of recurrent neural network for solving
linear programming problems is given, which can be realized easily by circuits. The algorithm’s
exponentially asymptotic stability in the whole 1s proven. It makes the neural computing approach
for linear programming trend to perfect.
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1 Introduction

The most widely used method for solving linear programming (LP) is the simplex
method developed by Dantzig in 1947, but it is not a polynomial-time algorithm'!’, The el-
lipsoid algorithm proposed by Khachiyan showed that LP problems can be solved in poly-
nomial time, but the algorithm itself i1s not a practically effective algorithm. The Kar-
markar algorithm and its variants appear to be more efficient polynomial-time algo-
rithm“*~%, but much work is still needed in terms of both algorithm refinement and soft-
ware development, On the other hand, the neural computing approach reveals a kind of
novel computing paradigm. Neural networks for solving linear programming problems
have been rather extensively studied over the years *~!°J,

However, in early neural net-
works for solving LP problems, issues such as the stability and convergence or the feasibil-
ity of equilibrium points were not strictly dealt with-*""* #1233 or some assumptions that
are difficult to check were included ** '*'. By means of duality theory, Chinese scholars de-
veloped a kind of neural network for solving linear programming and quadratic program-
ming problems *~* | which can solve simultaneously the primal and dual problems, and a
rigorous theoretical analysis of some fundamental issues such as convergence are given''®’ .
In [ 18], the primal and dual problems must be described simultaneously in a gradient sys-
tem, it makes the dimensions of the system bigger. Meanwhile, the rate that the solutions
converge to the equilibrium point has not been discussed . The neural network in { 19 ] is
exponentially asymptotically stable in the whole, but the activation functions with expo-
nential makes it very easy to overflow and difficult to be realized by analog circuits.

In this paper, by a new inequality, we offer new duality theorems related to the linear
programmming problems, and a kind of new neural network for solving linear programming
problems i1s developed. The proposed neural network has exponentially asymptotically sta-
ble in the whole and smaller dimensions and is easily realized by analog circuits, The pri-
mal and dual problems can be solved simultaneously by the neural network and the vexa-
tious overflow in computing no longer exists. Meanwhile, we think that by the theory de-
veloped in this paper, it is possible to get a new polynomial-time algorithm for LLP problems.

The paper is organized as follows, In Section 2, the new duality theorems are presen-
ted. In Section 3, the e-optimal solution 1s discussed. Section 4 proposes the new simple
neural network. The exponentially asymptotic stability in the whole is proven in Section

5. In Section 6, some simulation results are shown. In Section 7, by an example we show
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that it is possible to get a new polynomial-time algorithm. We conclude the paper in Section 8.

2 Duality
Let function h(x) satisfy the following condition H) ;

) 1) h(x) €EC'(R) ,h(x) =0, k' (x)=0.
2) ph(1/up) . »co,h’(x) increases monotonically.

Lemma 1. For any a€ R and tor any x=0, the following inequality holds.
ar —h(a) < xh" " () —h(K' 7 (2)) (1)
Inequality (1) becomes an equality, if and only if a=h""!(x), where A’ (x) denotes the
derivative of h(x), and A" 7' (z) denotes the inverse function of A’ (x).
Proof. Let f(a)=zxa—h(a). Evidently, f(a) attains its maximum at a=h"""'(z).
That is, ax—h(@)<xh' ' (x)—h(h " (2))
Consider a linear programming problem as follows.
Program P. Min ¢'x
s.t. Ax=b, x=0
The linear dual of Program P is given as follows.
Program Q. Max b'w
s.t. Al'w<lc
wec R™
where ¢ and x are n-dimensional column vectors, b and w are m-dimensional column vec-
tors, and A is an m Xn (m<n) matrix.
Instead of solving Program P directly, for #>0, we consider the nonlinear programs
as follows

Program P,: Min cx+p > xh ™ (x;) —p D h(h' 1 (z;))
=1 j=1

s. t. Ax = b! X }, 0
We shall show that Program P, has a dual program as follows:

Program D#: Max bTW——#Eh((Eaijwi_”Cj)/#)
j=1 i=1

s.t. we& R™
Theorem 1(Weak duality). Min(P,)=>Max (D,).

Proof. For any wE€ R™ and j=1,2,+,n, leta,=(2a;w;—c;)/p. Suppose x;, =0 sat-
i=1

1sfies Eau.rj,—-—b , tor t=1,2,+*,m. Then by (1),

j=1
ra; —h(a;) < xjh’*(xj) —h(A 7 (z,)), forj = 1,2, ,n (2)
By summing over j, we have

Tw— th( Za,}w — ¢; )/,u < c' x—}—#ZI}l_l(I)—#Zh(}l (x;)) (3

That is, Mm(P )>’Max(D ). [
Remark, Let a;,= (Xa,w;—¢;)/#—1 and h(x) =e*. Then inequality (3) becomes
(6) of [22]. For y<<0, let h(y)=—In(—y). It is easy to get the original barrier function

#zﬂjlnxj and 1ts duality,
j=1
Theorem 2. Given that w(u) € R™ and x(u) € R” such that Ax(u) =b and x(u) =0 if
IJ(#) — hf((zaljwt'(ﬂ) __CJ)/#)! fOI‘j — 112,"'971 (4)
t=1

then w(x) 1s an optimal solution to Program D, and x(x«) is an optimal solution to Program
P.. Moreover, Min(P,) =Max(D,).
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Proof, By lemma, inequality (1) becomes an equality if and only if a=h""! ().
Hence 1nequality (3) becomes an equality if and only if

™m

hﬁ(a}*) == ’((Zauwi(;z)“cj) ‘u):: e

Let f(w,u)=>b"w— th((Zauw —c, )/

i=]
Theorem 3(Strong duality). If the set of optimal solutions of Program D is non-empty

and bounded, then there exists g, >0 such that Program D, and Program P, all have opti-
mal solutions as & (0, ). Let w(u) € R™ be an optimal solution to D,. Then formula
(4) provides a dual-to-primal conversion, which defines the optimal solution x(«) to Pro-
gram P,. Moreover, Min(P,) =Max(D,).

Proof. By Proposition 1 of | 20 ], there exists ¢, >0 such that f(w,u) can attain a
maximum as #€ (0,u,), Let w(x) be an optimal solution to Program D,, If ¥V f(w,z) de-
notes the gradient of f(w,;z) , then ¥V f(w(u) ,;1)——“:0 That 1s,

Za”h ( Zakjwk(#)-—c )/ ) Eaux (), for1 = 1,2, ,m

Combmmg the above equahty with Theorem 2 gwes Theorem 3. (]

3 An g-optimal solution

By Theorem 3 and using Proposition 1, Proposition 2 and (2. 1) of [20], we have
Theorem 4 as follows.

Theorem 4. Il the set of the optimal solutions of Program D is non-empty and bound-
ed, then there exists ¢, >0 and a compact set K such that w(u) € K as & (0,,), where
w(u) denotes the optimal solution to Program D,. If Iim w(g,)=w" , and x(x,) 1s defined

p, =0T
by (4), then w” is an optimal solution to Program Dk and x(u,) approaches to an optimal
solution of Program P as g,—07.
Theorem 5. Suppose that x(u) solves Program P,. Then ¢’ x(¢) decreases monotoni-
cally, as >0 goes to 0. Moreover, for g, >p, >0, if x(zt;) and x(y,) solve Programs P,
and P, , respectively, then

0 < o p(x ()Y — plx(u)) 1 << et x(py) — e x(pp) <<l p(x(p)) — plx(py)) | (5)
where p(x)*zsr h' ' (x, )—'—Zh(h’, (x,)).

Proof. Smce x(p;) and x(pz) solve Programs P, and P, , respectively, we have
¢ x(uy) + o plx(py)) < ¢! x(#z)—F#lP(I(#z)) (6)
¢ x(p) +pp(x(u)) < elx(uy) + poplx(py)) (7)
Multiplying (7) by —1 and adding the resultant inequality to (6), we obtain
0 << (g — ) [ p(x(p2)) — p(ax (1)) ]
Since y, >, » we know that
plx(u)) = p(x(y)) (8)
After rearranging terms in (6) and (7) and using (8), we further have
0 < o] p(x()) — p(x(uy ) ] << elx(py) —e x(py) < il px(py)) — p(x(y)) 1 C
Theorem 6. Suppose h' ' (x) has left-hand derivative and right-hand derivative, and
that x* is an optimal solution to Program P. Then p(x* )= p(x(w)). Let L=max{|p(x" )|,
h(0)}. Then O<ch(,u) —ctx" <pl plx* ) —plx(p)) [<<2uL

Therefore, as u<’—, x(u) 1s an e-optimal solution to Program P.

2L
Proof. Since x(u) is feasible, ¢’ x(u)>=c'x" , and
¢ x(p) +pup(x()) <e'x" +pplx”)
Therefore,
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0 eTx(p) —c"x < pulplx™) — plx(p))]
It is easy to know that when A’ 7! (x) has left-hand derivative and right-hand derivative,
p(x) is differentiable and p’'(x)=h""1(x). So p(x) attains its minimum —h(0) at A" (0) and
p p(x*) — p(x(e) ] << 2max{| p(x") |, | p(x()) |} < 2 max{| p(x") |,h(0)} T

4 A simpler perturbation function and the relative neural network

ri.:z: +-B-3:+ , x=20,

For f>>1, we define h; (x) = 232 —(x+p*, §<x<05
_1_ —ﬂ-.r—I*Z ﬂ
h 2 € ’ Ig 7"

It is obvious that h; (x) satisfies condition H). Consider the iollowing nonlinear program.
Program f,: Maxb'w— 2 h, ( (Xa,w;—c, )/,u)
j=1 i=1

Suppose that the set of the optimal solutions of Program D i1s non-empty and bound-
ed. By Proposition 1 and its proof in [ 20 ], there are g, >0 and compact set K, when p€&
(0,p0), for all B=>1, the optimal solution of Program f, belongs to K. Therefore, for
big enough, the optimal solution of Program f; is identical to the optimal solution of Pro-
gram F as follows

m

Program F. MaxF(w,#)——bTw—pEH((Eauw —c¢;) /¢ ). where

} 1=1

f—%-'.rz Jl ‘:E-I' | > vy T > 0,
H(x) =< (9)
2
.
252 ——(x+p*, x <
There is no longer an exponential function part in (9).
I‘}“%}‘ ;I;—-—'O!
The derivative of H(x) i1s H (z) =< ) )
iﬁ?‘r E ﬁ ‘!I<O.
H'(x) is a piecewise linear function. The gradient system of Program F is as follows:.
_ - r Ap;Wye — C; i
dwl —-——bi“—zale’ ; v v 1= 142, ym (10)
dt i=1 ¢ J

A proposed recurrent neural network for solving (10) consists of n massively connected ar-

m
tificial neurons, m integrators, m—+n adders as shown in Fig. 1 where r,(w)=2.a,w.—c¢:,
i=1]

o,=r;(w)/py 1=1,2,++, n and n neurons are corresponding to n elements of activation
states x(¢).

Equation (4) makes the primal and dual problems be solved simultaneously by the
proposed neural networks, We only solve a system with m dimensions, not m-+n dimen-
sions as in | 181,

S5 The convergence of the proposed neural networks

Theorem 7. Suppose that rank (A) =m and the set of the optimal solutions of Pro-
gram D 1s non-empty and bounded. Then the equilibrium point is exponentially asymptoti-
cally stable in the whole.

1

Proof. It is easy to know that for any x, and xz,, there are a(x;,x,), and = i —<alx » 25 )
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Fig. 1

Architecture of the proposed recurrent neural networks for (10>

<_1, such that

H (x,) — H (x,) = alx; 2,)(xy — 1) (11)
et w(u) be an optimal solution of Program F, and let v=w—w(u). Then the gradient
system of Program F becomes as follows:

g_;f :%% = VF(v+w(u),) = VEFv+w(u),p) — VEw(pu),u) =
- AT, T _
A Hf(A W C) Hf(A (W_{_ V) C)J:-“JM(IlgIg)ATV/# '
i 7z z
1d ‘ 1 A,
We get 24— T AN Gy 2 AT/ VT AATYS = e ]

where A(x; yx,) =diag(a; (x1yx2) s (1 v X2 ) s s, (x5 )) s @, (xysx2) 18 as 1n (11),

A
and A,, is the minimum eigenvalues of matrix AAT. Thus | v]|<C|v(0) | e w

6 Simulation examples
The examples come from [12], [14], and 19 ], respectively. In computing, we used
the Runge-Kutta method and the half step rectitying.

Example 1''*. min — 8zx; — 8x;, — 5z3 — 5x,
s. t. DXy — 0xs — X5 —
— 2x, + 31, — X =
X + X3 = 4()
To —- T4 =60
Tis Tos T3s Tas Tsy I5=0
Example 2'**. min —3z, — x, — 3x;
s. t 2z, +x; +x3 + x4 =
x, + 2x, + 3x; -+ . =5
2x, +2x, + x3 + oz, =
T1s Xps Tzs Tas Xsy Xs=0
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Example 319 min 3z, +2x, + x5 +4x,

S. t. 2.1,'1 T 4..1'32 -+ 5I3 —+‘ Xy — Xp — 230 ’
3x;, —x + Ty — 224 — Tg —46,
5.I'1 ‘“I‘Z.Ig —l—Ig +6$C4 “_.I7:345!

Tis Xos Xzs Tas Tss Tes X720,
The parameters are:f=1. 0e+10, u changes from 0. 001 to 0. 0000001 in Example 1 and
Example 3, from 0. 001 to 0, 00001 in Example 2, the elements of initial vectors are all 1.
Fig. 2 and 3 illustrate the convergent state trajectories of Examplel. The optimal val-
ue is —739. 99973 and the optimal solutions are as follows:
w = (0.59999714, — 0. 00000410, — 10. 99998980, — 4. 99999790)" ;
x = (40.00002478,39. 99997311,0. 0,19. 99999956,0. 0,40. 00000207)*

2
¥ W, ) W, 2 W
0 | ——————— £ w“ﬁl‘-'-"'-‘...__ __ — [ 4
, 0.1 0.2 W, 0.3 0. 4 0. 0000001  0.00001 \ Negaf W, O-1 16
— . e _2
—4 L —4
—6 "‘ Wi /6
—8 — 8
W3
—10 W, 10
—12 —12
Fig. 2 Convergent state trajectories in Example 1 Fig. 3 Convergent state trajectories with

logarithm time scales in Example 1

Fig. 4 and 5 illustrate the convergent state trajectories of Example 2. The optimal val-
ue 1s —5. 39987900 and the optimal solutions are as follows:

1.0 w
0.5
1%
0 W t
L
~1.0 W
— 1.5 —1.5
Fig. 4 Convergent state trajectories Fig.5 Convergent state trajectories with
in Example 2 logarithm time scales in Example 2

w = (— 1. 20004801, — 0. 59999200,0. 00005001) 7,
x = (0.19967117,0.0,1.60011964,0. 0,0, 0,4. 00094638)".
Fig. 6 and 7 illustrate the convergent state trajectories of Example 3. The optimal val-
ue 1s 215, 00444435 and the optimal solutions are as follows:

1.0pw | 1.0 pw
0. 8 0. 8[
0. 6 W, 3 W, 0.6}
0. 4 0.4
0.2 W, W, 0. 2
0 ———————— ‘ ————— 91
o C 0. 00 w, 0.004 0. 006 lE—08 0.000001 — 070001 y, 0.01 __0.2_1
Fig. 6 Convergent state trajectories Fig. 7 Convergent state trajectories with

in Example 3 logarithm time scales in Example 3
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w = (0.08699704, — 0. 00002900,0. 56521990)7,
x = (64.99999771,0.0,19.99999625,0. 0,0. 0,289. 00000034,0. 0)7.

7 About the polynomial-time algorithm

In the discussion above, a kind of perturbation function (see (9)) different from the
original logarithm function is used. It makes the algorithm not trend to the interior of fea-
sible region as with the logarithm perturbation. The algorithm with the new perturbation
function may be like the simple method slighly, but trend to the interior side of the restric-
tion super-plane. These characteristics make the algorithm search a better point in the
whole. We will show this by an example as follows. The example comes from Klee-Schri-

jver, and we take it from [ 21 ].
Example 4(Klee-Schrijver).

max 2"“11?1—“‘ 2"“31:3+ *re ~+ T2n1
S. t. 11T T :5,
4z, + O + T3+ x4 =5°,
2"z 4 0+ 2" T3 + 0+ = 4 Ty 3+ Tono =5"",
2"y + 042"y + 04 4y, ; - O-F 2o+ 22, =07
Tis Tz voo Tons =0,

Solving Example 4 by the simplex method, one initiates from the feasible base B =
(P;y Pyy++y Py,). It has been proved that it must take 2" —1 iterations to attain the opti-
mal solution.

With the help of perturbation function (9), using Newton direction method, and initi-
ating from every vertex of the feasible region, the computing cases for n=5~10 of Exam-
ple 4 are shown in Table 1.

Table 1 The computing cases for n=5~10 of Example 4 with the proposed method

n 5 6 7 8 9 10

Maximum iterative numbers 13 19 28 42 61 77

Average 1terative numbers 8.5 11 14 19 22 25
Parameters pu=10e— 13, f=10e+21

It is shown that the maximum number of iterations is less than n* and the average
number of iterations is less than 3n. The author thinks that work on this way may develop
new polynomial-time algorithms which can remain the strongpoint of less average number
of iterations in the simplex method.

8 Conclusion

For linear programming problems, using different perturbation functions, will bring
about different effects. With the help of new duality theorems proposed in this paper, new
methods and new neural networks for solving linear programming problems can be devel-
oped. Meanwhile, the means used in the paper i1s of interest in developing new practicable
polynomial-time algorithms for linear programming.
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