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Genetic Algorithm with Dynamic Regional Multi-Species!’
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Abstract A novel genetic algorithm with dynamic regional multi-species is proposed in this paper.
Each of those genetic species occupies a dynamic region that is determined by the weight vector of
a fuzzy adaptive Hamming neural network. Through learning and classification of genetic individu-
als in the evolutionary procedure, the neural network distributes multi-species into different re-
gions of the search space. Furthermore, the neural network dynamically expands each search re-
gion or establishes new region for good offspring individuals to continuously keep the diversifica-
tion of genetic population. As a result, the premature problem inherent in genetic algorithms is al-
leviated and better tradeoff between the ability of exploration and exploitation can be obtained.,
The experimental results on the optimization computation of typical muiti-modal functions also
have shown good performance of the proposed genetic algorithm,
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1 Introduction

The evolutionary procedure of the biological organisms has been a vitally important
feature over thousands of years on earth. This nature feature has led to the genetic algo-
rithms which has been used as an alternative method to the traditional optimization strate-
gies. The theoretical research and engineering application for the genetic algorithms have
shown its peculiar and excellent performances over other traditional optimization meth-
ods'' ™", However, the premature convergence is still the outstanding problem in genetic
algorithms. Premature convergence implies that the genetic algorithms converge to local
optima, which is mainly caused by the following reasons: 1) the key alleles may be proba-
bly lost in the procedure of genetic selection; 2) the key alleles may be broken by the ge-
netic crossover operation, and genetic population could not reserve enough diversified
genes, so the genetic population is occupied by a few local-optimized individuals; 3) the
unsuitable control parameters may cause the unbalanced relationship between global and
local searches. Various heuristic schemes for alleviating the premature problem and mak-
ing the genetic algorithms faster have been proposed in the concerned literature®™ %!, They
focused on the selection operator, crossover operator, parameter setting, encoding, search
procedure, multiple species, etc.

Genetic algorithm based on multiple species involves more than two species and the
immigration between different species. The different species evolves with different control
parameters and the immigration among species grabs and reserves better individuals. So it
can help to maintain the diversification for gene pool and to obtain higher global conver-
gence rate, For example, GAMAS'is a typical genetic algorithms based on multiple spe-
cies. The genetic algorithms based on sharing fitness distribute individuals into different
peaks in the fitness map, it is also helpful for diversifying the genetic population.

A novel genetic algorithm with dynamic regional multi-species is proposed in this pa-
per. It includes multiple species which are located in the different regions of the search
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space. 1he region occupied by each species i1s determined by classifying all individuals, and
the region is dynamically changed in the evolutionary procedure. The classifying is based
on fuzzy adaptive Hamming neural networks.

The evolutionary operations consist of the genetic operators in each region and be-
tween the regions, in which the former presents better local search ability while the later
presents better global search ability, so the good tradeoff between global exploration and
local exploitation has been obtained. The proposed genetic algorithm can guarantee the
population diversification and effectively alleviate the premature problem inherent in the
genetic algorithm. Also the experimental results have shown that the proposed method is
better than the general genetic algorithms based on general multi-species and that based on
sharing fitness.

2 Genetic algorithm with dynamic regional multiple species

2.1 Evolutionary diagrams
The proposed algorithm first establishes M regional species by random initialization,
then carries on evolution inside single species and evolution among different species. Final-

ly the algorithm tests if it has converged. The evolutionary diagrams are shown in figures
1 ~3.

Randomly generate Randomly select an individual Select individualﬁi from
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Fig.1 Random initialization Fig. 2 Evolution inside single species Fig. 3 Evolution among

different species

M output nodes of the adaptive fuzzy Hamming neural networks correspond to M

11121 40 the vector space. In this paper, the

search space of the genetic algorithm is mapped onto the vector space of the neural net-

clusters which occupy M hyper-rectangles

works. And these M clusters are attached to M genetic species, so each species corre-
sponds to a unique hyper-rectangle in the search space.

As shown in figure 1, in the initialization step, enough individuals are generated ran-
domly and are classified into M species by the Hamming neural networks. That 1s, M hy-
per-rectangles (M species) are generated by initialization, and there are N individuals 1n
each of these species. So the population size 1s N X M individuals. Evolution inside a single
species and evolution among different species are shown in figures 2 and 3, respectively.
The alternative evolutions inside and among species tavor a good balance of global and local
searches.
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2.2 The relationship between the dynamic region of genetic species and clusters of neural
networks

Assume a generalized genetic individual is a K dimensional vector; X =
{xy 92Xz sxkx )} Where £, €[0,1}; k=1~K. In order to guarantee the convergence of
learning for the fuzzy adaptive Hamming neural networks "!''?), every genetic individual is
encoded as a complementary vector I=(X,X%) to the input to the Hamming net, but ac-
tually the vector X only corresponds to a unique I. Assume the weight vector of the Ham-
ming net is W= {W/,j=1~M} where W = {w’ :i=1~2K}, the number of the output
nodes equals to the number of total species, so each W’ corresponds to one output node,
thus corresponds to a species, The W’ determines the location and the size of its hyper-rec-
tangle'!'!?), and furthermore determines the region of a species. In the evolutionary proce-
dure, the total number of neural output nodes is constant. So if a new species is estab-
lished, an old one must be destroyed.

Assume the vigilance parameter of Hamming net is po. If input vector I satisfies the
following criterion.

I AW ]
I

then the input vector is classified into cluster J. J can be calculated by the following equa-
tion

= p where j € 2 (1)

_ I AW
J = arg Mai;ér}]lumd W] (2)
where a 1s a positive real-valued number called the choice parameter. For a new generated
individual I, if no any cluster J satisfies equations (1) and (2) and the fitness of individual
I is higher than that of individuals in an existing species,new species will be established tc
replace the old existing one.
Similar to the structure of the complementary code, the weight vector of Hamming

net can be interpreted as W/ = (U’,(V/)%) where U’ = {uf,ul,*yuk} and V' =
{v] v, yuk } have the same dimensions as that of individual X and satisfies that u/ <<v/,
Vi,J. Just as shown in Fig. 4 (take 2 dimensional vector X as example), vectors U’ and
V’ determine a K-dimensional hyper-rectangle R’ in the K-dimensional space [0,17%,
Vector points U’ and V’ correspond to the corners nearest to and furthest from the origin

of the coordinate system, respectively.

4 T,

Fig. 4 The hyper-rectangle of the Hamming net and its expansion

2.3 Dynamic change of the genetic region
Each species has a best individual inside its hyper-rectangle, so M species have M best
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individuals. To the j-th species (also the hyper-rectangle R’), its hignest fitness value is
f'5 so the fitness values of the best individual set ¥ are f7,j=1~M. Assume that the
best individual in the S-th species (also in the hyper-rectangle R®) has the lowest fitness
value in the set ¥, that is,
F = Minimumj” (4)
When a new offspring individual X is generatégf its corresponding complementary vector I
ts inputted into fuzzy adaptive neural Hamming net. The net will classify the vector I as
follows.
D Tt I is classified into an existing hyper-rectangle R’, then expand R’ and carry on
learning for the neural weight vector W’ as shown in figure 4 and the following two equa-

tions .

W' (new )= W' (old ) \ I (5)

R’ (new)= R’ (old YD X (6)
The above equations can be divided as

U (new)=U’ (old) N X (7)

Viinew )=V’ (dld )V X (8)

From the vigilance criterion of equation (1), the largest size of any hvper-rectangle should
satisty the constraint

'R’ (old YD X< (1 —p)K (9)
where the size of hyper-rectangle R’ is determined as
R = [V =-U" (10)

[ID If I does not belong to any existing hyper-rectangle and its corresponding individu-
al’s fitness value F(X)<Cf°, then individual X is abandoned directly.

II1) If I does not belong to any existing hyper-rectangle, but its corresponding indi-
vidual’s fitness value f(X)> f°,a new hyper-rectangle is established to replace the old
hyper-rectangle R, that is, R° (new) =X. Consequently a new species is set up.

2.4 Evolution inside each species

Take species J as example, select two parents from species J, and generate new off-
spring individuals by crossover and mutation operations. Each offspring X 1s classified by
Hamming net then.

If X still belongs to species J (that is X € R’ ) ,expand the hyper-rectangle R’ as de-
scribed in the above subsection. Then X 1s used to replace 1ts parent directly it its fitness
value is higher. In fact, the expansion of hyper-rectangle R’ has recorded the evolutionary
search history inside species J, so that redundant searches can be avoided and the evolu-
tionary search can be faster by using the direct replacement.

If X does not belong to species J (that is X& R’) ,ignore and discard this new genera-
ted otfspring X.

2.5 Evolution among different species

First randomly select two individuals from two different species, crossover and mutate
them to generate two offspring individuals. Assume X is one of the offspring. Hamming
net classities X then.

If X belongs to species J (that is X&€R’), expand the hyper-rectangle R’ as described
in the above subsection. Then X 1s used to replace its parent directly if 1ts titness value 1s
higher,

If X does not belong to any existing species, abandon X or establish a new species for
X according to the cases II) and III) in subsection 2. 3.

2.6 Discussion on dynamic regional multiple species
The using of the dynamic regional multiple species has four main characteristics.
I) Each species occupies a certain region which 1s a hyper-rectangle ot adaptive fuzzy
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Hamming net. And all species locates at different regions of the search space. Thus the di-
versification of genetic population can be maintained, and the premature problem can be al-
leviated.

[ID The direct replacement of parents with their better offspring can enhance the con-
vergence speed.

IT1) The evolution inside species presents high mutation rate, and plays the role main-
Iy on local search. The evolution among species presents high crossover rate, and plays the
role mainly on global search.

IV) The combination of evolution inside each species and among different species bal-
ances the tradeoff between exploration and exploitation of the genetic algorithm,

3 The experimental results

The proposed genetic algorithm, standard genetic algorithm, GAMAS and genetic al-
gorithm based on sharing fitness have been carried out optimizing F6 function and Grie-
wangk function in this section. All the experiments are implemented on a PC-PIII800/

256 MRAM.,
3.1 Optimizing F6 function

F6 function is a typical two-dimensional multi-modal function'™, which is
. - sin® V/xf +3y° —0.5

=05 = 16,001 (2% + 57) )

where its global optimized value locates at (r=0, y=0),and there are infinite local opti-
mized values near the origin (z=0,y=0).

In order to contrast the performance for all mentioned genetic algorithms, the popula-
tion size for all methods 1s set to 200 individuals. And each method has carried out 50
times to obtain the average results. The control parameters for the proposed method are:
the number of multiple species is 10, the mutation rate inside species is 0. 15, the cross-
over rate among spectes is 0. 50, the vigilance parameter is 0. 96, The control parameters
for GAMAS are the same as that in [ 7). The main control parameters for GA on sharing
fitness®) are ¥=0.5, %uue =2. 2. The experimental results are shown in Table 1. From the
table, the proposed genetic algorithm obtained 100% global convergence rate which is
much higher than other mentioned methods and it does not need more time to converge,

(11)

Table 1 The experimental results on F6 function

Genetic algorithms Global convergence rate( %) Average convergence speed(Sec)
Standard genetic algorithm 24 7.32
GAMAS 52 9. 45
GA on sharing fitness 30 5. 77
The proposed GA 100 6.46

3.2 Optimizing Griewangk function

Griewangk function‘'* is a multi-dimensional function often used to test the perform-
ance ol genetic algorithms, Griewangk function is defined as

N N
FX)= D> x1/4000 — [Jcos(z,/47)+1 —600 <z < 600 (12)
i=1 i=1

where N is the dimension of the function. The global optimized value locates at x; =20;

V i,and the local optimized value locates at x;= +kn+i; i,£=1,2,. The standard ge-
netic algorithms are always premature at local optimized points.

The optimization results on Griewangk function by the proposed GA and the GA on
sharing fitness are shown in Table 2. Fifty times of the implementation for each method
have been carried out and Table 2 has shown the average results. The population size for
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the two methods is set to 200 individuals. The control parameters for the proposed method
are: the number of multiple species is 20, the mutation rate inside species 1s 0. 20, the
crossover rate among species 1s 0, 75, the vigilance parameter is 0. 90, The control parame-
ters GA on sharing fitness-*! are y=2. 0, Taare = 3. 0. Table 2 has also shown good per-
formance of the proposed GA.

Table 2 The experimental results on Griewangk function

GA on sharing fitness The proposed GA
Dimension Speed : Global convergence Speed (Global convergence
(Second) ~ Beneratons rate( %) (Second) ~ Bemeratons rate( % )
10 32.7 43962 24 23. 3 7350 92
h0 663, D 172934 10 047. 5 20871 78
100 2077, 3 240665 2 2746, 5 37693 70

When selecting different control parameters for the proposed GA, it still presents
good performance both at global convergence rate and at convergence speed. According to
these experiments, the mutation rate inside species and the crossover rate among species
can be set in the range of 0. 1~0. 2 and 0. 5~0. 6, respectively, and the vigilance parame-
ter can be set near 0, 9,

Besides the above optimization experiments, the proposed method 1s also used to find
the best solution for TSP problem and to optimize the neural network’s structure and
welghts. The experimental results have also shown that the proposed method is obviously

better than standard GA, GAMAS and GA on sharing fitness.
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