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Abstract This paper deals with the order planning of single machine with multi-product classes
and sequence-independent setup times, and proposes a mixed integer-programming model to mini-
mize the sum of earliness/tardiness penalties of orders. It presents a pseudo-polynomial algorithm
based on the filtered beam search by discussing the NP-hardness and the necessary condition of ad-
jacent groups in an optimal sequence. The computational complexity analysis and simulation re-
sults have confirmed the effectiveness of the algorithm.
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1 Introduction

For enterprises that receive different sorts of orders and produce a great variety of
products, if jobs of the same class are processed in groups, then redundant machine setup
times and related expenses could be reasonably reduced. In [ 1] a comprehensive survey of
scheduling problem involving setup times is provided, and the objective is job-related,
while order planning has the complexity of multi-product classes and the objective is order-
related'?~*, [4] proposes a pseudo-polynomial algorithm and a dynamic programming al-
gorithm to minimize the number of tardy orders without batch splitting and with batch
splitting, respectively, Though progress in the earliness/tardiness (E/T) scheduling
problem has been seen these yearst®, few effective resolutions to the order planning with
E/T penalties have been discussed. The problem can be stated as follows: #n jobs from M
orders can be classified into B product classes, and each order’s due date and the job pro-
cessing time are pre-determined. The assumptions are: all jobs are ready for processing at
time zero and no preemption is allowed; the machine can process only one job at a particu-
lar time and no idle time is allowed; setup times are sequence-independent. In order to
minimize the total earliness/tardiness of orders, jobs from different orders have to be
grouped and the groups sequence should be decided. Following the three-field notation'®,
the problem is 1/ST, ,GT/g, in which ST, represents the sequence-independent setup

time, and GT means processing without group splitting. g= 2 (aOF,+B0OT,) is the

1<ISM
performance criteria, where OFE, and OT, represent the earliness and tardiness of order [,

respectively, @, and 3, the earliness and tardiness penalty weights of the order, respectively.

2 Mathematical formulation

Under the group technology assumption, a group is referred to as a job sequence be-
tween two consecutive setups. Jobs from one order with processing similarities can be cat-
egorized into a group, so the total group number i1s b=B X M. 1i group ¢ has », jobs, the
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total job number is n= 2 n;. The setup time of group i is s5,,» J, ts the jth job in group i,
=1

pi» ¢; and d; are the processing time, completion time and due date of job J,; , respective-
ly. x5 =1 if J, is in the Ath position of the sequence, otherwise, 0;y, =1 if job in the kth
position requires a setup time ot s,, otherwise, 0. The completion time and the due date of

group ¢ are C; and d;, respectively. So the mixed integer-programming model can be for-
mulated as follows:

min I_EEM(HEOEE-%.BEOTE) (1)
S, 1, ixfjk:l! 1.:1!2!'"&6'! j':l!za'"!??g (2)
21211‘1}&“—1 k 1 2 (3)
Ztlejkmi:.rlj‘kulgyfky i::],gze”'gba k:2935"'1?3 (4)
b
Z‘E-Iijl(si—!_pij)a k=1
Co=<""" (5)
Ez.ruls +ZEZIUIPU+ZZM5” k=2

Li=1ij=1 t=1y=1l=1 =1l =

C, = r'n:;?us-;C'ljr y d, = E Exukdu , E,=max{0,d,—C,}, T,=max{0,C,—d;} (6)

}“f:n 1= 1y =1
OE; maX{Eld ___Od{} OTg:maX{TI"di:Od{}! z:1#2!“'1M (7)
Lk = 91 ya{."’—o 19 I‘*—l 2 961 jzlgzg"'ynip k:1929"'9n (8)

Constraint set (2) restricts that each job be assigned to only one position, and (3)
guarantees exactly one job 1s scheduled in the £th position. Constraint (4) establishes the
requirement of a setup time s; in the kth position provided that the job in the (£—1)th po-
sition is not of class i. (5) provides the job’s completion time, the due date and the E/T

of groups and orders are provided by (6) and (7), respectively. The decision variable x,
is defined in (8).

3 Computational complexity and optimal properties

Theorem 1. The problem 1/ST, , GT/g is NP-hard with M orders and B product clas-
ses(the proof is omitted).

Define the slack time of the group S;,=d,—t—P,, where t 1s the earliest time the ma-

chine is free, and P, is the processing time of the composite job P, = 2 p. +s., define a,
§=1

and B as the group E/T penalty weights, respectively, and define
0, if S, <0
@, =<5,y 1H0<S, <P,

P,, otherwise

We expand the theorem in [ 7] and get the followings.

Theorem 2. In the optimal order planning, all adjacent pairs of groups (where group 1
immediately precedes group j) satisfy the following adjacent condition:

/BfP; —@;} ()8: +as) ;B;‘P;' “@ji(ﬁj +a_j)! isj — 1—2,‘",6 (9)

Proof. Consider the adjacent groups ¢ and j are both early in sequence II;. Exchanging
the two groups may yileld two cases in II, (see Fig. 1): 1| ) groups i and ;j are both early;
ll ) group ¢ tardy, group j early. Let O, and O; be the cost of the subsequences (7,7) and
(7,1), respectively. So in case [ ) we have
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Fig.1 Two sequences of the adjacent groups

DD O;=a,(d;—t—P)+a,(d,—t—P,—P;)=a,{d;—t—P;)+a;(d;—t—P;)—a,P,,
Oj;*:aj(dj t—P;)+a;(d;,—t P,—P;)=a;(d;,—t—P;)ta,(d;,—t Pi)“‘aip;'-

Since S;,=d;,—t— P, 2P, and S;,=d,—t—P; 2P,, we have ®; =P, and @, =P,. U-
sing these facts in inequality (9) gives a,/P;<Ca;/P,, therefore, O;<0;.

In case I ) we have

2) O,'_,' =a;(d;—1t P;')‘I"CI;‘ (dJ l Pi__Pj):ai(di l Pi)"l"aj (d, 4 Pj)_-ajpi!

O;=a,(d;,—t—P)H)+BU+P,+P,—d,).

Since &; =S, and ®; = P, using these facts in inequality (9) gives B8, (¢t+ P, +P,—d;)
za,(d;—t—P;)+a;,(d; —t—P,) —a;P,, therefore, O;<0;.

The same procedure can be applied to other cases of groups ¢ and 7. That is,

1) InII, , both groups i and j are tardy. Two cases in IT; ; both groups 7 and j are tar-
dy; group ¢ tardy, groupj early.

2) In I, , group i early, group j tardy. Four cases in II, : both groups 7 and j are tar-
dy; group : early, group j tardy; both groups 7 and j are early; group ¢ tardy, group j
early,

3) In II, s, group 1 tardy, group j early. Only one case in II,: group i tardy, group j
early.

Property 1. If two adjacent groups 7 and j have S;<.S; and satisfy the following three
conditions:1) H;=a;/P;<<e;/P;=H;;2) W, =8,/P, 25,/P;=W;;3) a;p, +B,p, < (B + ;)
(S,—S,+p;) or a;+B;<.a;+F;. Then the sequence :<j 1s the optimal group sequence in
the order planning.

Property 2. In the optimal order planning, if the WSGPT (weighted shortest group
processing time, 1.e. , W, =W, =+ >=W,) sequence 1s set and results in a schedule that
does not have any early groups, then the sequence is optimal; otherwise, if we set the
WLGPT (weighted longest group processing time, i.e. , H;<CH,<{-<CH,) sequence and

get a schedule that does not have any tardy groups, then the sequence is optimal (Proof is
referred to [ 7 ]).

4 Solution procedure

rWi ¥ lf Sigo
Let the improved group priority be &,(S,)=<W,—S,(W.+H,)/kP, if 0<S,<kP
—H;, otherwise

_ L b i
where P is the average group processing time P=[ 2 (2 (p; +s5,) ]/b. Set parameter & to
=1 j=1

avoid clashes between multiple groups. Let U and V be two integers used for decisions in
checking group priority and the objective function. The details of the algorithm are de-
scribed below.

Step 1. Use the WSGPT rule. If the sequence does not have any early groups, the se-
quence i1s optimal and the algorithm stops. Otherwise, use the WLGPT rule. If the se-
quence does not have any tardy groups, the sequence is optimal and the algorithm stops.
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Otherwise, set initial group sequence II,, and go to Step 2.

Step 2. Initialize the parameter k,¢,P,b. Let Go,={1,2,++,b} be the set of groups
that can be scheduled first, and C={g,} be the set of nodes retained in the search.

Step 3. Let partial sequence set A=, and for each sequence g, in C, calculate ¢,(S,)
of each group in G; at time ¢, and the total completion time of the partial sequence g;. Let
K be the U groups of the highest priority. If there are fewer than U groups in G;, then se-
lect all the groups. For each group £" in K: create a new sequence g. by appending %’ to
the end of sequence g,, add gu to set A, and create set G- which is set G, excluding group &',

Step 4. Let C= @, calculate each sequence’s objective function in set A, and select
the lowest V sequences in A. If there are less than V sequences in A, select all the se-
quences.

Step 5. If the sequences in C are the complete sequences of groups 1,2,+<<,8, then se-
lect the sequence with the lowest objective function as the best solution and the algorithm
stops; otherwise, go to Step 3.

Theorem 3, In the worst case, the computational complexity of the above mentioned
algorithm is bounded by O(UV*b*logblog(UV)).

Proof. The computational complexity of the WSGPT (or WLGPT) rule is O(blogh).
The algorithm is based on the tiltered beam search. At step 3, the selection of U groups of
the highest priority needs a time complexity up to O(V{(6b— 1D iogV(b—1)), while at Step
4, selecting V sequences with the lowest objective functions needs O(UVlog(UV)). There
are b iterations for b-group problem, so the overall time complexity of the algorithm is
bounded by O(UV*d* logblog(UV)). If parameters U and V are constants, the time com-
plexity is O(&°logh).

§ Simulation example and conclusion

The algorithm is coded in C language. For a 3-order and 3-job class case, the process-
ing times, setup times, E/T penalty weights and the due dates are listed in Table 1. With
k=3,U=3, and V=2, the sequence result is 1-4-3-6-2-5-8-7-9 (shown in Table 2 with the
starting time and E/T values of each group). Several other tests have been conducted, and
all the data are generated randomly with different parameters in a discrete uniform distri-
bution. The maximum and average deviation and optimal solution rate were compared.
The results show that the algorithm can produce more accurate and etficient solutions.

Table 1 The data of 3-order and 3-job class

Due date Farly/tardy
Jjob class 1 Job class 2 Job class 3 4 penalties (a, /8, )
 Order 1 P, =6 P, =3 P, =9 37 0.2/0. 8
Order 2 Pi= P: =8 P¢=75 43 0.3/0.7
Order 3 P;=10 Pg =4 Py=56 40 0.4/0.6
Setup times 51 = §p =2 sy =4

Table 2 The computational results

group i ; E; T,
1 0 28 0
2 31 i 0
3 13 1] 0
4 Y 30 ()
D 36 0 |
. 26 12 0
7 48 0 21
ol 44 C 8
9 61 G 31
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The problem under this investigation suggests a new research direction. We propose a
mixed integer-programming model and analyze the optimal properties and necessary condi-
tions for order planning, which largely facilitates the solution procedure. The elfectiveness
of the algorithm has been testified through the complexity analysis and computational re-
sults, which may have some practical implications.
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