%20k %2 H 31 &t % Mk Vol. 29, No. 2
2003 4€ 3 A ACTA AUTOMATICA SINICA Mar. ,2003

An Algorithm for Impulse Response Identification Based on
Fixed Scale Orthogonal Wavelet Packet Transform?’

LI He-Sheng' MAO Jian-Qin®* ZHANG Fu-Tang® ZHAO Ming-Sheng'

Y(The Department of Electronic Engineering , Tsinghua University, Beijing 100084)
2(The Tth Research Division, Beijing University of Aeronautics and Astronautics, Beijing 100083)
3{The Institute of Electronic Engineering , Chinese Academy of Engineering Physics, Mianyang 621900)
(E-mail,; liheshengphd@ sina. com)

Abstract Wavelet packet transform is used as an efficient tool for precisely analyzing signal prop-
erty, and provides orthogonal wavelet packet bases with better time-frequency localization func-
tion. In this paper, by applying orthogonal wavelet packet bases to Eykhoff algorithm a new im-
pulse response identification algorithm is proposed, which has better practicability , and wider ap-
plication range. Simulation results show that the proposed algorithm can be applied to determinis-
tic system and random system, and is of higher identification precision, stronger anti-noise-inter-
ference ability and better tracking system dynamic property.

Key words Wavelet packet transform, time-frequency analysis, Eykhoif algorithm, impulse re-
sponse identification

1 Introduction

Impulse response identification is a kind of non-parameter identification. Its tradition-
al 1dentification algorithms mainly have Eykhoif algorithm and correlation analysis algo-
rithm", Correlation analysis algorithm is fitted to impulse response identification of ran-
dom system, and its disadvantage lies in that correlation analysis algorithm does not trace
the change of system behavior very well. Eykhotf algorithm is fitted to impulse response 1-
dentification of deterministic system, and its identification principle is that impulse re-

sponse function g(t) is expressed as a linear combination of a group of orthogonal function
baSESg i. €. »

g(1) = Ef(t)& = F (2)¢€ (1)

where f;(t)(i=1,2,+,N)is a group of orthogonal function bases, and §= [ §,,&,+*,&x )"
are projecting coefficients of g(z) on orthogonal function bases F(t). For Eykhoff algo-
rithm, it is important to choose a group of orthogonal function bases, However, the tradi-
tional orthogonal function bases has good time resolving power and poor frequency resol-
ving power, or the other way round'?’.

Being developed from wavelet transform, wavelet packet transform can be used as an
efficient tool for precisely analyzing the localization information of signal at arbitrary mo-
ment and arbitrary frequency point*', and can provide orthogonal wavelet packet bases
with even better time resolving power and frequency resolving power, In this paper, by
applying orthogonal wavelet packet bases to Eykhoff algorithm a new algorithm for im-

pulse response identification is proposed, which has better practicability , and wider appli-
cation range,

2 Basic idea for impulse response identification based on fixed scale orthogonal wavelet
packet transform

In wavelet packet transform, given an orthonormal scale function ¢(¢) and utilizing
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double scale difference equation.

W, (1) = V2 D hew, (2t — k)
) Yy (2)
W 1 (1) =2 D gaw, (2t — k)

k& Z

the orthogonal wavelet packet {w,  ,(¢) *=2""%w, (27t —k),n€Z/Z ,;E€Z,kEZ} for
@(t) can be created, where w,(t) =¢(t),{hs}rez and { g, },cz are a pair of conjugate or-
thogonal filter coefficients deduced from @(z). Wavelet packet transform can precisely ana-
lyze signal properties because of its multi-layer division function for signal frequency belt.
So-called impulse response identification based on fixed scale orthogonal wavelet pack-
et transform 1s as follows. The impulse response tunction g(2) (€V, ) is projected on all
orthogonal wavelet packet spaces of the largest decomposition scale, namely the spaces
with the highest time-frequency resolving power. By identifying the projecting coefficients
(namely wavelet packet transform coefficients) the impulse response function can be indi-
rectly identified. For example, given the initial scale j;, and the biggest decomposition
layer m=4, the original signal space V, is divided by orthogonal wavelet packet spaces
pa(s=1 v 2,3,4;0<n<2°—1)at different scale j=j,+s, as shown in Fig. 1, where the
shadowing spaces are orthogonal wavelet packet spaces chosen by the impulse response i-
dentification algorithm based on fixed scale wavelet packet transtorm.

Fig. 1 Orthogonal wavelet packet spaces selection (namely shadowing spaces) for impulse response
identification bases on fixed scale orthogonal wavelet packet transform

From multiresolution theory of wavelet transform'®', if initial scale j, € Z is very
small , the scale space V; can approach to the square integrabel space L7 (R) very well,
1, €.

V, =~ L°(R) (3)
Hence, for orthogonal wavelet packet transform we have
L*(R) =~ Vjﬂ, — Uf{} — U?G+1 @ Ujﬂ+1 — U,?U+2 @ U}ﬁa—z (‘D Uiﬁz @ Ufﬁz — ' (4)
2™ —1
Function group U {2 Y™™ 2q (2% ™™ r—k) k& Z} composes the orthogonal bases

of L*(R), where m i;Lc(iecomposition layer of wavelet packet transform,

If system impulse response function g(¢) is approached by its projection on the or-
2™ -1

thogonal bases U VW, +mk (E) 1 RE L) of space L*(R), then g(t) can be expressed as fol-
lows: "

joAm
o™ _1k,0

g(:t) = 2 Z pg(ﬂ!jf} +m,k)wn,jg+m,,@(}f) (5)

: : .o n=0 k=0 _
where projection coefficients { p,(n,j,+m,k) },c, are wavelet packet transform coetfi-

cients of g(¢) in the wavelet packet space Uj ..
Consider a single input single output linear system
r

y(t) = |g(Dult —)dr (6)

o

where u(t), y(t) and g(¢) are system input signal, system output signal and system im-
pulse response function, respectively.
Substitute (5) 1into (6), we get
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o Flkjﬂ+m
y(t) = E Z P, (nsjo+m,k) (J. W, }D+m,k(t)u(t — r)dr) (7)
Let n=0 k=
gn,_,'ﬂ-f-m,k(t) — Jwﬂ_jn+m,k(f)u(t — 7)dr = wn,jﬂ+m,k(t) ® u(t) (8)
where the sign (X) denotes the convolution operator. Thus
2m 107"
V() = D0 D] penajo +mak) G bms (B (9)

n=>0_

0
Because system input u (¢) and output y(t) are known and the chosen orthogonal
wavelet packet bases are also known, from (9) the projection coefficients { p, (n,j, +m, k),

n=0,+,2"—1; k=0, k7™ } of system impulse response function g(z) on the orthogo-
2M™ —1
nal wavelet packer bases U {wy,; +ms(2),2€ Z} can be calculated by using least-square

n=10

method. Thus the impulse response function g(¢) is identified indirectly, and using recon-
struction algorithm of orthogonal wavelet packet transform we can get the system impulse
response function g(t) in the time domain.

3 Theory algorithm and fast bmary tree recursion algorithm of ¢, ; ... (2)
First we introduce the projection operator and present a lemma as follows.

Definition 1'*), The projection operator from space *(Z) to space [*(2Z) is defined to
be F, and F,, 1. e. ,

r"F‘l{}(;sk)(l) — Ehk_ggsk
< ke Z (10)
Fi(S)W) = D gsuSs
ke Z

where {h,} and {g,}! are low pass filter coetfficients and high pass filter coefficients for
double scale difference equation (2), respectively.

Lemma 1. Let initial scale of wavelet packet transtorm be j, and decomposition layer
be m& Z". For arbitrary n€ {0,1,++,2"— 1} at the scale j=j,+m, the wavelet packet
bases function w,,;,,(¢) of wavelet packet space U’ += can be expressed as follows

oy (&) = F, (F (= {F, (o0 (D)) (o)) o) (k) } (D (11)
which is simplified to
ngi(t) "_F F Fg" {w{)}_ﬂ k(l)}(l) (12)

where {wo,j-n k(t)}kez are orthonormal bases of wavelet packet space U .. (namely scale
space V,_, ), ‘and e, is the ith coefficient for binary expression of n, i. e. ,

.
L

n = E 2 (13)

=1
where n; 1s the maximal index for binary expression of n.

Proof. Omitted.

Theorem 1 (theoretical algorithm of g, ; 1, (t)). Assume that the initial scale for
wavelet packet transform is j,. For arbltrary decomposmon layer m€& Z7, arbitrary inte-
ger n€{0,1,+,2"—1} and k€ Z, at decomposition scale j=j,+m, §,; +n:(¢) defined as
(8), namely &, ;. (¢),satisfies

cn,;.k(t) = F"”] ng "'an_ {gﬂ,j_ni,z(t)}(k) (14)

where e; i1s the ith coefficient for binary expression of n, and n; 1s the maximal index for bi-
nary expression of n, i.e, ,

i — Eei?—l (15)
i=1

Proof. Omitted.

Theorem 1 prowdes a theoretical algorithm for &, ; .. (¢). However, The prOposed
theoretical algorithm is complicated and has much repetltlous computation. Therefore, it
Is necessary to propose a fast discrete algorithm for &, ; 4. (2).

Owning to the specific form of orthogonal wavelet packet bases, in this paper the
sampling period of time variant ¢ is set'*
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T, = 2% (16)
Thus time variant ¢ 1s expressed as follows.
t =11, =201,1 6 Z/7 (17)
Putting (17) into (9), we get
om_1 k0"
Y2900 = D7 DT (nsjo A mak) uyims (270 (18)

n=_0 k=10
It must be pointed out that discrete kq. (I8) does not cause any error for identifying p,

(ny7,+m,k). In order to s1mphfy expression, we will adopt the definition that * (i) sub-
stitutes for * (20¢) in [ 2], 1. e. ,

¥ (1) = % (2%1) (19)
Thus (18) can be simplified to:

Jo+m
A L

y(i) = D) D p(najo +mB) oy (1) (20)

n=0 k=9
Theorem 2(Fast discrete blnary tree recursion algorithm for ¢, jo+mk (2)). Assume that

the 1nitial scale for wavelet packet transform is j,. For arbitrary decomp051t10n layer meZ"

and arbitrary integer n< {0,1,+-+,2" —1}, the discrete algorithm for ., 4, (2) is as fol-
lows.

1) When j=j,, §&.; o (D207 u(i).
2) According to §,.;0(i), &,.;.:(i) can be computed as
Cujk (1) = 8, 01— 2777k) (21)

where j=j,+ 1,7+ 2, ,jo+m, Osin< 270 — 1,

3) According to fig. 2, C,.;.c (1) can be computed step by step.
fczn,;,o(i) — Ehkgn.jwl,ﬂ(i — 270 k)
J ke Z (22)
MCanH*j,D(I‘) = nggn,jf—l,m(f"‘“zrl_j”k)

L _ _ kEZ
where j=j,+1,j0+2,,j, +m, Oéwﬁf%r o —1,

o, gt 00 (1)

. )
o e B |
. ! __k _,I I____.l ‘:::1 }{]_Ld :_'}.'!
T j
o I S
[ ‘ — | - gz,;ﬂﬂ,ﬂ’(f)
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Fig. 2 Fast discrete binary tree recursion algorithm for C,,,Jﬁﬁ-ﬁm‘,,(z)

Proof. Omitted.

Because the length of high pass filter group and low pass filter group of wavelet are
limited, the burden of recursive computation in theorem 2 is very low, and the speed of com-
puting .., +..: (1) is improved very much.

4 Some parameters discussion
For the proposed impulse response identification algorithm, some parameters such as
orthogonal wavelet packet bases, initial scale j,, decomposition layer m, and £ ™ in (5)
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must to be considered. These parameters will be discussed as follows.

1)Orthogonal wavelet packet bases selection

In the proposed impulse response identification algorithm, the selected orthogonal
wavelet packet bases are generated by initial scale function of Daubechies II(DB2)%/,

2) Initial scale 5, selection

The selected j, directly affects the precision of the orthogonal wavelet packet series of
g(2) in (5). At present, there is no widely accepted criterion to select j,, and j, in general
takes a small negative integer.

3)Decomposition layer m selection

Given a scale space V; , decomposition layer m does not affect the precision of impulse
response identification algorithm, but it finally determines the number (i.e. =2") of fre-
quency belt of g(z) divided by wavelet packet transform.

4) kio™™ computation in (5)

In (5), klo™™ virtually denotes the number of wavelet packet transform coefficients of
g(t) 1n each wavelet packet space at decomposition scale j =j, +m. Supposed that the
number of wavelet packet transform coefficients of g(z) in the scale space V; is ko, We
have

klot™ = 27"kl (23)

Suppose that the valid action time of impulse response function g(z) is ¢t,. In order to
ensure that g(z) can be covered with its discrete form g(i) (i € Z7 ), parameter k{ must
satisfy

2okl >t (24)

1. €, »

klo = 270¢, (25)

In fact, for arbitrary decomposition scale j =7, +s(0<{s<{m), the number &7 of
wavelet packet transform coefficients of g(¢) in each wavelet packet space U; +. (0<n<
2°—1) can be computed as follows:

kio™ == 27k (26)
where 0<s<m, and 0<n<<2'—1.

For arbitrary k2 ™*, In order to ensure that 0 ™* is an integer more than zero, kj must
satisty

Rle = 2700t

hio — 9omy (27)
where r is the number of wavelet packet transform coefficients of g(z) in each wavelet
packet space Uj ., (0<kn<.2™ —1) at decomposition scale j=j,+m, 1. e. , r=kp™",

S5 Impulse response identification algorithm based on fixed scale orthogonal wavelet packet
transform

Impulse response identification algorithm based on fixed scale orthogonal wavelet
packet transform is proposed as follows.

Stepl. Determine the initial scale j, and decomposition layer, and from (16) compute
the sampling period T, of g(z).

Step2. Evaluate the valid action time ¢, of impulse response function g(z), and from
(27) decide the length &% of discrete series of g(¢). From (26) the number k™ * of wavelet
packet transtorm coefficients of g(z) in each wavelet packet space U} ,, (0<<n<<207* —1)
at arbitrary decomposition scale j=j,+s(0<{s<<m) is computed.

Step3. Adopt orthogonal wavelet packet bases function of Daubechies 11 (i. e, DB2),
and according to fast discrete binary tree recursion algorithm in theorem 2, compute all
Cavjo+5,6 (1) step by step, where 0<Cs<m, 0n<C2°—1, O<CR<C27%k{ —1.

Stepd. Parameter vector X construction.

Let x(n) (0<in<{2™ —1)denote a row vector composed of all wavelet packet transform
coetficients p,(n,jo+m,k) (0<CE<C2 "kl —1) of g(¢) in the wavelet packet space at de-
composttion scale j=j,+m, 1. e, ,

x(ﬂ) — [pg(n,jg —+ m,0) ,pg(mjg —+- m;l) s *°° 9Pg(n!jo + m,Z"mkﬂﬂ - ].):] (28)

Let X denote a column vector composed of all row vectors x(n) (0<Cn<C2™—1) of g(¥)
at decomposition scale j=j,4+m, i.e. ,

X = [x(0),x(1),,x2" —1D]* (29)



No. <2 l.i He-Dheng et al. : An Algorithm tor Impulse Response ldentification Based on Fixed -+« 247

where sign T denotes the matrix transpose operator.

Stepd. Data vector A(7) construction.

Let a,(1)(0<xn< 2" — 1) denote a row vector composed of all &, , ;.. (i) (0<k<<
27"kl —1) generated by convolution in the wavelet packet space U} .. at decomposition scale
j:jn_"m, 1. €. »

a,(1) = [Cn,;m+m,u (2), nujotmyl (2) 4=, gn,;ﬂ+nz,2"’"kém-—1 (I):I (30)

LLet A(7) denote a column vector composed of all row vectors a, (i) (0<n<{2™—1) at
decomposition scale j=7,+m, 1. e.,

A(D) = [a, (i) ya, (i) yreraom_ (1) T (31)
where sign T denotes the matrix transpose operator.

Stepb. Based on least square method, wavelet packet transform coefficient series X of
g (1) at decomposition scale j =j,+m 1s identified.

According to the definition of X in (29) and the definition of A(:) in (31), (20) can
be simplified to

A (DX = y(D) (32)
When 7 takes value 1, 2, -,k , (32) can be changed tc
A'X =Y (33)
where
A= [A1),A(2), -, Akl )] (34)
== l:y(l)yy(Z)a"'ay(kéﬂ )]T (35)

By using least square method, wavelet packet transtorm coefficient series X of g(¢) at
decomposition scale =7, +m can be identified easily.

Step7. Wavelet packet transform coefficient series X is processed.

Since wavelet packet transform coelficient series X of g (¢) are of specific physics
meaning, X can be directly used to analyze the properties of g(¢) in frequency domain. On
the other hand, from the identified wavelet packet transform coefficients, original impulse
response function g(¢) can be reconstructed by using the reconstruction algorithm of wave-
let packet transform.

6 Simulation example

In order to demonstrate the validity of the proposed impulse response identification al-
gorithm, in this section two numerical simulation examples with different conditions are
given, In the simulation examples, identification error ¢(i) and variance & are defined as
follows:

e(i) = g(i) — g(i) (36)
L
A 1 . 2 r
6 = L*lié:[e(l)] _ (37)
Simulation example adopts the transfer function in 1], i.e. ,
G(s) = - 2 (38)

(8.354 1)(6. 25+ 1)
Example 1, System output without noise. Consider identitying object

B 1.2 |
Yis) = (8. 3s+1)<6.25+1>U(”) (39)

where input signal «(z) 1s Gauss white noise with mean 0 and variance 1.

et the valid action time of impulse response function ¢, =50 seconds. In order to sat-
isfy data length demand for wavelet packet transform at initial scale, valid action time of
impulse response function virtually takes value t, =52 seconds. Let initial scale j,=—1,
decomposition layer m=3, and sampling time :=500 seconds of system input and output.
According to the proposed impulse response identification algorithm, sampling period ¢, =
27'=0.5 seconds. Thus the length of discrete series of g(#) takes value k) =104, and
sampling data length L =1000. We adopt orthogonal wavelet packet bases of Daubechies
II. By using the proposed impulse response identification algorithm, identification result
g (1) for impulse response function g(i) and its identification error e(z) are showed in Fig. 3.

Let system input u(z) be stochastic bar signal with 1ts amplitude being normal distri-
bution and its period taking 40 sampling periods. By using with the proposed impulse re-
sponse identification algorithm, impulse response identification results are show in Fig, 4.
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Fig.3 Impulse response identification results for system output without noise(where j,=—1)
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Fig. 4 Impulse response identification results for system input being stochastic bar signal (where j,=—1)

In Fig. 3, the variance of identification error e¢(i) i1s 1, 1676e— 6, which shows that
impulse response identification precision for deterministic system is very high. In Fig, 4,
the variance of identification error e(i) is 2. 3173e—6, which shows that impulse response
identification precision for system input being deterministic signal 1s also very high.

Example 2. System output with noise. Considered identiiying object

B 1.2
Y = BTG s o S TANG (40)

where N(s) denotes Gauss white noise with mean 0 and variance 1, «(¢) and n(¢) are all
white noise, u(z) 1s not correlative with n(z), A is a parameter which limits noise. Let
noise-signal-ratio be 18% and 33%, respectively.

Parameters selection is similar to example 1. Impulse response identification results
for noise-signal-ratio being 18% and 33% , and their identification errors are shown in Fig.
5 and Fig. 6, respectively, where variance of identification error e(i) is &3, =2, 4798e—6

and d;; =6, 8803e—6. Fig. 5 and Fig. 6 show that the proposed impulse response identifica-
tion algorithm still is of high identification precision in spite of system output being of
strong noise.

In order to compare with other impulse response identification algorithm, the impulse
response 1dentitication results based on correlation analysis algorithm for noise-signal-ratio
being 18 % and 33%, and their identification errors are shown in Fig. 7 and Fig. 8, respec-
tively, where variance of identification error e(7) i1s &3, =1. 8038e—5 and 6., =2. 2320e—15.
Compared with correlation analysis algorithm, the proposed impulse response identifica-
tion algorithm in this paper i1s of higher identification precision.

Now, let sampling data length L =5600. For example 2 we adopt correlation analysis
algorithm again. The impulse response identification results show that variance 8,; =
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Fig. 7 Impuise response identification results based on correlation analysis algorithm for system output
with noise-signal-ratio being 18%

7. 0481le—6 for identification error (i) when noise-signal-ratio is 18 %, and variance é;, =
8.2515e—6 for identification error e(i) when noise-signal-ratio is 33%. The impulse re-
sponse identification result comparsions of the proposed algorithm in this paper and corre-
lation analysis algorithm are listed 1n Table 1, where initial scale j,=-—1. Table 1 shows
that for obtaining same identification precision the sampling data length required by the
proposed algorithm is much shorter than required by correlation analysis algorithm.
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Fig. 8 Impulse response identification results based on correlation analysis algorithm
for system output with noise-signal-ratio being 33%

Table 1 Impulse response identification result comparisions of two algorithms
Noise-signal-ratio The proposed impulse response Correlation analysis Correlation analysis
e-(;) identification algorithmin this paper algorithm algorithm
° (L=1000) (L=1000) (L=5600)
18 2. 4798e—6 1. 8038e—5 7.048le—6
33 6, 8803e—6 2.2320e—35 8.2515e~—6

Furthermore, in order to know the effect of initial scale j, selection for impulse re-
sponse identification precision, some numerical simulations on the condition that j, =0,
—2 and — 3, and noise-signal-ratio takes 0%, 18% and 33% are carried out. Limited by
the space of this paper, all impulse response identification result curves and their identifi-
cation error curves are not presented in this paper. Only the identification errors are listed
in Table, 2. It indicates that the higher identification precision , the smaller initial scale
jos and that the proposed impulse response identification algorithm has higher identifica-
tion precision and better capacity of anti-noise interference,

Table 2 Variance comparision of impulse response tdentification errors with different simulation conditions

. Noise-
& signakratio 0% 18 % 33%
Jo
0 3, 817%e—6 4, 5357e—6 6.34153e—6
— ] 1, 1676e—6 2.4798e—6 6. 8803e—6
— 2 3. 3043e—7 2. 0b8%e—6 6. 238%9e—6
—3 | 9. 0960e— 8§ I.9440e—6 5.544%e—6

7 Conclusion

In this paper a new impulse response identification algorithm based on the fixed scale
orthogonal wavelet packet transform is proposed . The proposed algorithm can be applied
to deterministic process and random process very well. Numerical simulation is given to
demonstrate the advantages of the proposed algorithm such as higher identification preci-
sion, better capacity of tracking system dynamic behavior and anti-noise interference.
Compared with correlation analysis algorithm, for the same identification precision the
sampling data length required by the proposed algorithm is much shorter. Furthermore,
the identitied wavelet packet transform coefficients of impulse response g(z), which are of

deterministic physics meaning, can be directly used to accurately analyze system frequency
distribution,
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