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Abstract Based on invariants of Petri nets, an approach to the enforcement of fairness and live-
ness is presented for classic automated manufacturing systems. First of all, a tair net is obtained
by adding some places that make the net have only one T-invariant. Then, a fair net is enforced to
be live through controlling minimal siphons by P-invariants. Importantly, the concept of redun-
dant strict minimal siphons is put forward, which can greatly simplify the synthesis and analysis of
Petri net model of the system considered. Generally, the set of non-redundant strict minimal si-
phons is a much small subset of the set of strict minimal siphons in a Petri net, particularly in
large-scale ones. The results show that all strict minimal siphons cannot be emptied if non-redun-
dant strict minimal siphons are controlled. Examples are presented to illustrate these approaches.
The results obtained can be applied to a larger class of flexible manufacturing systems and are of
significance to Petri nets based scheduling problems for automated manufacturing systems,

Key words Petri net, automated manufacturing system, liveness and fairness, non-redundant
SMS

1 Introduction

A variety of Petri netst"'* based techniques have been developed for dealing with dead-
lock problems arising in an FMS (Flexible Manufacturing System). The first one 1s called
deadlock prevention. The aim of this approach is to design a system such that its corre-
sponding Petri net model 1s live by restricting the number of raw materials entering into
the system**~*., Therefore, it is logically impossible for deadlocks to occur. This method
has a high conservative effect that will degrade productivity and resource utilization al-
though liveness is guaranteed at global level. The second approach is to control the re-
quests for resources and avoid the system 1n a deadlock state, If a request for a resource
may lead to a deadlock, it will not be granted then [ 6]. The third one is to modify Petri
net structures by adding some control places and make the Petri net deadlock-free or live.
For instance, in [ 7] a control place is added for each strict minimal siphon (SMS) and
therefore no siphon can be emptied. The last one is called deadlock detection and recovery.
This policy will not painstakingly pursue deadlock-freeness or liveness in a system. It will
permit deadlocks to occur. Once a deadlock is detected, some recovery actions can be done
either manually or automatically*®*!, Generally, high resource utilization and productivity
can be reached using this policy. However, some control programs have to be pre-designed
for dealing with deadlock problems when a deadlock indeed occurs. In addition, some aux-
tliary devices may be needed.

The deadlock control strategy proposed in this paper falls into the third category. By
structure analysis for a Petri net, an algebraic technique is developed to ensure that the
target net model 1s deadlock-free and live for many kinds of automated manufacturing sys-
tems. And furthermore, this control policy is minimally restrictive to the behavior of a
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system. The concept of RSMSs (redundant SMSs) is of significance to the design of con-
trol algorithms and controllers for FMSs. However, the deadlock control methods availa-
ble do not consider the fairness problem in a control system. Fairness means starvation-
freeness, which 1s an important criterion ot progressity for a distributed system with
shared resources. Consequently, a live and fair model 1s high-level system modeling.

2 Basic Petri net definitions and notations

A Petri net is a 3-tuple N=(P, T, F) where P and T are finite, nonempty, and dis-
joint sets. P i1s the set of places and T 1s the set of transitions. FC(PXT)U(TXP) 1s
called flow relation or the set of directed arcs. The preset of a node x& P T is defined as
t={yEPUT|(y, 2)EF}. The postset of a node x& P{J T is delined as z~ ={y& P
TI(x, vy)EF}. The preset (postset) of a set is defined as the union of the presets (posts-
ets) of its elements. A marking of N is mapping M: P—~IN, IN=1{0,1,2,3,-+}. (N,
M) is called a net system or a marked net. A transition :t& T 1s enabled under M, in sym-
bols M[¢), iff ¥ p€&t: M(p)>0 holds. If M| ¢) holds the transition ¢t may fire, resulting
in a new marking M', denoted by M[t)M', with M (p)=M(p)—1if p& t\t" ;s M (p)=
M(p)+1if p€¢°\"t; and otherwise M(p) =M (p), for all p€ P. The set of all markings
reachable from a marking M,, in symbols R(N, M,), is the smallest set in which M, &
R(N,M,) and M' € R(N, M,) if both MER(N, M,) and M[t)M' hold. For transition
tis tystery t, ET, g=1t,t,**t, 1S an occurrence sequence, in symbols M;[ )M, , iff there ex-
ist markings M,, M,, -+, M, such that M,[¢,)-{t,>M, holds. # (s, t) denotes the
numberof times that ¢ appears in . Let (N, M,;) be a net system and N=(P, T, F). A
transition 1€ T is live under M, iff Y MER(N, M,) IM €R(N, M). M'[¢t) holds. N is
dead under M, iff = 3:t€ T, M,{¢) holds. (N, M,) is deadlock-free ift YM&R(N, M,)
J:&€T. M[t) holds. (N, M,) is live iff ¥t& T r is live under M,. (N, M,) 1s bounded
ff FAEINN{O} YVMER(N, M)V pE P M(p)<k holds. N=(P, T, F) is pure 1iff
- J(x, VEPXTHOUTXP): (xy, YEFA(y, x)EF. We assume that in the follow-
ing all Petri nets are bounded and pure since the Petri net models of many physical systems
are bounded and a non-pure net can be transformed into a pure one while keeping the dy-
namic behaviors. Again let N=(P,T,F) be a net, A P-vector 1s a column vector I:P—>Z
indexed by P and a T-vector is a column vector J: T—Z indexed by T, where Z 1s the set
of integers. The incidence matrix of N is a matrix [N ]: PX T—Z indexed by P and T
such that [N](p, )=—1if p€'t\t" ; [N](p, )=1if p€¢'\'t;and otherwise [ N!(p,1)
=0 for all p€ P and t€ T. We denote column vectors where every entry equals 0(1) by
0(1). I" and [ N]" are the transposed versions of a vector I and a matrix | N[, respective-
ly. Let I be a P-vector and J a T-vector of N=(P, T, F). Iis a P-invariant (place invar-
iant) iff 140 and I" « [ N]=0" holds. J is a T-invariant (transition invariant) iff J7=0 and
[N]+J=0holds. || I[|| ={p&€P|II(p)F0} (| J | ={t&T|J(t)7#0}) 1s called the sup-
port of I(J). A nonempty set D P is a siphon iff ‘'DED " holds. A siphon is minimal iff
there is no siphon contained in D as a proper subset. M(p) indicates the number ot tokens
on p under M for all p€ P. p is marked by M iff M(p)>>0. A subset DO P is marked by
M iff at least one place in D is marked by M. The sum ot tokens on all places in D 1s deno-
ted by M(D), M(D)=3,.poM(p), Let (N, M,) be a net system with N=(P, T, F), let
] be a P-invariant, and DZP be a siphon of N. The siphon i1s controlled by the P-invari-
ant I under M, iff I" « M,>0 and I(p)< 0 for all p& P\D hold, or equivalently, I" « M,
>0 and {pE P|I(p)>0}CD. A minimal siphon that can be emptied is calied a strict min-
imal siphon, SMS for short. ¢1 and ¢2 are in a fair relationship iff 3 € IN\{0} YME
RIN.MH)VYoE T, if M(g) and # (6,¢,) =0, then # (g,¢;)<k holds, where i,j€{1,2},

17 j. If any two transitions are in fair relationship in N, N is a fair net. x;x,**x, is called
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a path in a net, denoted as EP(xy, x,), f z;,€ PUT, i€EN,, ;€ ;41 j € N,~1, where
N,={1,2,++,u}. The length of a path EP(x,, z.), denoted as || EP(x,, x.) || » is de-
fined as the number of nodes in EP(xy, x,).

I.et (N, M,) be a net system. If I is a P-invartant of N then Y MER(N, M,). I «
M=]" « M,. Let DCP be a siphon of N. If D is controlled by a P-invariant I under M,,
D can not be emptied, i.e. , YMER(N, M,): D is marked under M. If (N, M,) is dead

the set of all unmarked places forms a siphon. If no minimal siphon of N can be emptied
(N, M,) is deadlock-free.

3 PSR: A Petri net for modeling FMSs

Definition 1. (N;, M) is a strongly connected state machine, where N,= ({5} } U P5%,
T,, F,). That means Vt& T;, |'t]=1|t"| =1 and the following are satisfied: 1) p} & P%,
M,(pt)=1, 2) ¥V pEe P, Mi(p) =0, 3) every circuit of N; contains pj.

N; can be used to model the processing routings of part P,. That there are ni circuits
in N, indicates part P; has ni different processing routings in an FMS, which shows the
characteristics of FMSs—f{lexibility. p; is to model the raw materials in input buffers while
p€ P! represents some operation performed on P;. And hence p is called an operation
place,

Definition 2. PSR (Processes with Shared Resources) is a net system (N, M,) com-
posed by 2 (N,, M;)s via shared resources, where N=(P, T, F), satisfying: 1) P=P,
UPSUPR! P,= f=1{P3}r Pg= fﬂlP.iS! Pg= Uf=1piu 1€ Ny Ni={1,2,,k}, ¥ViC
N,s 7€ Ny, PEﬂPﬁ?ﬁgp; 2) T=Ui-1 T3 3) F= Ui F;5 4) Y pE Ps, M,(p)=M;(p)
=0, My (pi)=M; (p;) =1, i€ Ny; 5) Vr€ Pr, My (r)=1; 6) (P, UPs) N Pr=op;
N (PE)HPR:(PB) - ﬂPR=qo; V r& Py, '?‘ﬂ?"=§o; Vr&ePr, it 3t T,, r&'t, then 335’
€T, ret’ "y, YrEPr, YiEN,, 'rNT:l=1r"NT.|, ris called a resource place.

A PSR has the following properties; 1) there are m P-invariants I, I, ==+, I, , and
N LW UUWNIL, | =P and m=nl+n2+-+nk+|Pr|; 2) a PSR is covered by P-in-
variants, i.e., Yp&E P33T €N,, p€ || I, || 5 3) all P-invariants of a PSR are initially
marked; 4) a PSR has n T-invariants J15 J,5 >y J,» I Jh | UeeU I J. | =T, and VY1,
JEN,,i#j, At€ [ J:. ll» t& || J; || ; 5) a PSR is repetitive; 6) if DT P is a SMS of a
PSR, one will have M, (D) >=2.

PSRs can model the intrinsic feature of an FMS—{lexibility, although it is a subclass
of nets.

4 Fair Petri net design

Proposed in this section 1s a design method for fair Petri nets by adding some control
places.

Definition 3, PSR=(N,, M,) 1s a bounded net system with n T-invariants J,, J, .,
J.s where No=(P, T, F), || ], || ={tu, Lizs*** s l1,cy b Al T2 |l = {2 s fzza'"afrz.cz}a“'s
| T ll ={tu st !"'ﬂn,cn}! and T= || J, | Ul I U-UIllJ. I ,1SCKIT|. ViEN,,
the state observer of T-invariant J; is defined as a place p;; such that “p; = {tive } s tivg, €
| J.l| and =~ 3;€E N,, jFi, ti.. € | J; . The extended net system with added places
Pris Pizststs py. 1s denoted by (N, , M;), where N, =(P,, Ty, F\), P, =PU{pn, P>
Pty T =T, F, =:FU{(tl,n1 » P s (t2.a2 s Drzd ety (tﬂpan y Pin) iy YVPEP, M, (p)
=M,(p), and Vic N,, M, (p;;)=1.

The number of tokens on pj; is increased by one if transition ¢, € || J; || fires once.
Hence n: places like p;; can be used to observe the behavior of N;. M, (p,,)=1 is a neces-

sity for p;;. However M, (p;;) will be assigned a proper number as the case may be, which
will be discussed later.
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Theorem 1, Let (N,, M,) be a net system, where N, =(P,, T,, F,). If the set of
arcs F' is added such that Y MER(N,, M), 3", M(p,)=L, LE N*, then N,=(P,,
T,, F,) is a fair net, where P, :=P,, T, =T,, F, :=F, UF'. (N,, M,) denotes the net
system corresponding to N,, where Y p& P,, M, (p)=M, (p).

Proof, By contradiction. Let us assume that N,=(P,, T,, F,) is not a fair net. By
the definition and properties of a PSR, 3:, j€EN,, i7%j, 3t || J; i, € | J, Il s t and
t' are not in fair relationship. That is to say, 3 firable transition sequence ¢ and a positive
integer L', # (g, t)=L">>L and # (o, t') =0 hold. By Definition 3, the state observer of
T-invariant J, is detined as p;; with "p;; *={¢;, }. Lett,, *=t. Therefore there definitely
exists M& R(N,, M,;) such that M(p,, ) >L. There 1s a contradiction with the fact that
VM&R(N,, M;), I M(p,;) =1L holds. Consequently, N, 1s a fair net.

Theorem 2. Let (N,, M,) be the net system as stated in Theorem 1. Then N, =(P,,
T,, F,) has a unique T-invariant J=(1,++,1)", where || J || =T,=T,=T.

Proof. By contradiction. Suppose that N, has two T-invariants J, and J,. By the
properties of PSRs and T-invariants, there exists ¢& || J, || * such that Y LE IN, and we
have M,[g)>, # (¢, t)=L, and # (g, ' )=0, wheretE€ || J, Il , £’ € || J, | . This is obvi-
ously contradictive with the fact that N, is a fair net. )

Next, we will discuss how to obtain F'. For (N,, M,), we have Y MER(N,, M,),

W M(p,,)=L. Prompted by the meaning of P-invariants, one can make {p,; s p,*",
P} be the support of a P-invariant of N,. By the definition of P-invariants, if {p;1, Pz
p,. 118 the support of a P-invariant, then Y M& R(N,, M, ), and we can get 3, M(p,, )= L.

Hence, we have
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The above equation can be simplified to (1). The solution for F’ is as a matter of fact to
solve the equation system represented by (1). Note that such an equation system has gen-
erally multi-solutions. However, we always hope the number of elements in F' is small,
and that the smaller the better. The reason seems quite simple. A net with fewer arcs will
be easier for us to analyze than the one with more arcs when the two have the same number
of places and transitions. Hence we propose the following rules for solving (1) without
proof. Only one of @i +*** s @1.c15 @1 s°**s Q2.2 """ » @ui»*** » @u.cx can be assigned to be —1
and others 0, where o€ {xz, y,+*,2}. In fact this rule ensures that Vi€ N,, | pu|=
' p,,'1 =1, which in most cases guarantees there are fewer SMSs in (N;, M;) (in next sec-
tion, we use an iterative algorithm to prevent SMSs {rom being emptied. The smaller
number of SMSs undoubtedly means the smaller number of iteration times). (1) has n—1
solutions.
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By solving (1), every state observer p; has an output transition ¢;. In a PSR, there
exists a unique p} for ¢; such that p, € Poand EP(pg, ¢;) is a path. Let M, (p) =M, (p;)
so that the behavior of the system will not be restricted due to the join of p;, P2 etc.
Any of n—1 solutions can ensure that {p;,, pj2s ***s pj. ¢ 1s the support of some P-invari-
ant,

5 Design of Petri nets with liveness

By the properties of a Petri net, if no minimal siphon can be emptied it will be dead-
lock-free. Here we present an approach to prevent a siphon from being emptied due to P-
invariants based feedback control'** and controlled siphons.

Theorem 3. Let D be an SMS of a fair net system PSR=(N,, M,), where N,=(P,,
T,, F;) and D={p;y***y p;» ***y pr}. Add place pp such that (0,++,0,1,,+,1;,,1,,0,
+++,0,—1)T becomes a P-invariant of the extended net system with pp, (N3, M;), where
N3=(P39 Tg! F3)! P3 =:=P2 U {pD}a Tg ==sz VPGPZF and Mg(p) ==M2(P). Let
M;(pp)=M,(D)—1. Then D is a controlled siphon.

Proof. Let I=(0,*,0,1;,%+,1,,+,1,,0,++,0,—1)", I is a P-invariant of N; and
V p€ P;\D, I(p)<<0. Furthermore, I' « M;=M,(D)—M,(pp)=1>0. So D is a con-
trolled siphon.

Clearly, DU {pp} is the support of a P-invariant of N;=(P;, T3, F;).

The solving for F; seems simply again. We assume | N; J=[[ N, ]|V, 1", where V; is
a row vector due to the join of Py into [ N, |]. Let I=(U,—1)", where U=(0,-+,0,1,,
eeeyl;ye0,1,,0, *++,0), One can get U * [N, |—V,=0", and furthermore, Vp,=U « [ N, |
due to I" « [ N, |=0".

We have already known if every SMS is controlled in a net system i1t will be deadlock-
tree. The results iollowed show that not all SMSs need to control if one wants a net sys-
tem to be deadlock-free. Accordingly, what we need to do, in many cases, is to ensure the
content of non-redundant SMSs (non-RSMSs). If every non-RSMS becomes controlled in
a net system, all RSMSs are also controlled. This is an important result developed in this
paper.

Definition 4. Let N=(P, T, F) be a net and DCP be a siphon of N. P-vector Ap is
called the characteristic P-vector of D iff V p& D: Ap(p)=1; otherwise Ap(p) =0. np is
called the characteristic T-vector of siphon D with qD:AE « [ N].

Obviously, Vp=Ap ¢ [N ]=np.

Definition 5. Let N be a Petrinetand Dy, D;, D, ,*, D,(n€& IN/{0,1}) be SMSs ot
N. 7 1s the characteristic T-vectors of D;, i€ N, U {0}. D, is called an RSMS (redundant
SMS) with respect to D,, D,, =+, D,({or brevity, we call D, an RSMS) if Mot T oz T T
7o = 7po holds.

Theorem 4. Let (N,, M;) be a net system and D,, D,, D,,*, D, be SMSs of N,.
D, 1s an RSMS with respect to D, D,,+-, D,. D, ts a controlled siphon if 1) N, 1s ex-
tended by n places pp,» pp2s ***s pp. such that D;, D,, *+, D, become controlled siphons,
and 2) M, (D, )>E?=1M{J (D;)— ZL]LED;E ‘

Proof. lLet Ay and »p be the characteristic P-vector and T-vector of siphon D;, respec-
tively, :& N, {0}. The extended net system with n places pp;» Ppzs ***s Pp is denoted
by (N,, M,). And its incidence matrix is denoted by [ N; ] . Obviously, [ N, |[=[[ N, ]|
qgl ['qu | oe | q'ﬂ! 1", And M, (pp) =M, (D,) —¢&,. Note that 77:&- =) * | Ny ) and Mpo = 7pi -+
7]D2+"“_7?&:- S0 (/\an —L, —1py ey —1,) [Nlj‘—-(;{}:;o! — 1y =1y, oy —1,) ¢ [NUT
| 17}51 | 7752 oee | -rﬁ;,, 1* =q};ﬂ — 1?'51 — qﬁz — eer — 17’5,1 =0T, According to the definition of P-invari-
ants, (Aposy —1y» —1,, *=+y —1,)7is a P-invariant of N,. Next, we will prove that D, is

marked under Ml. VMGR(Nla Mi)! (AEM“’IH '—'125'"5__1,1) N M=()IEM"‘11;‘—"‘12;
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ey —1,) o My =Ape " ¢ My — M, (pp,)) =M, (ppy) — o —~M,(pp,) =A% * My — (M, (D,) —
20) — (M, (D) = £0,) — -+ — (M, (D,) — &0,) = M, (Dy) — (M, (D)) + M, (D,) + -+
M, (Dﬂ)_Epl — & & ) :M@ (D) —( 2?:1Mo (DI) — Z?:] Eni ). Due to the fact that
M. (D,)>>2" M, (D,)— 2" &, holds, we have (A% ,—1,,—1,,-,—1,) « M>0. That
is to say, YMER(N,, M), (A, —1,5, — 15y =y —1,) » M>0. Hence D, is a con-
trolled siphon.

Definition 6, Let (N,, M;) be a net system and II be the set of SMSs of N,. VY D€&]I,
D is called a non-RSMS if = 3D,, D,, <+, D, € T such that No1 T e T eee T+ Non = Moo
holds, where n€ IN\{0,1}.

Note that if we use non-RSMSs to prevent SMSs from being emptied, two conditions
must be satisfied for &5, which are 1) 1<C&, <M, (D;)—1 and 2) M, (D,)> 2" M, (D.)
— 271 &x. The smaller &, is, the more tokens pp will have at the initial marking, That
means the Petri net will have more permissive behaviour. So we strongly recommend that
&, =1 if possible. However, in some cases &, may have to be greater than 1.

Definitioin 7. LLet N=(P, T, F) be a net. Suppose that N has k@ SMSs D,, D,, «-,
D., where |P|=m, |T|=n, m, n, k€ IN. Ap (qp) is the characteristic P(T)-vector of
SMS D.. We define [A:Mm:[;‘{m [Apr | = Hij and EVkan:[A]kxm X I:N:Im'xn:[‘!}m ‘?71)1 |
cos | qm]T. We call [A](:wyj) the characteristic P(T)-vector matrix ol the SMSs of N.

Theorem 5. Let N=(S, T, F) be a Petri net. The number of non-RSMSs in N is e-
qual to the rank of [ 7]...

Proof. We assume N has £ SMSs and 2" non-RSMSs (£=%"). Then there are £ — k'
RS5MSs in N. By Detinition 5, 7 (i=k +1, B +2, +=+, k) can be linearly represented by
ny (=14 2, <, £'). We have that the rank of I:q:lw,, is #' according to the definition of
the rank of a matrix.

Due to Theorem 5, the approach becomes trivial to {ind non-RSMSs in Petri net N.
First, we construct matrices [A | and [ »] for net N. Then linearly independent vectors can
be found in [1]] Finally, we can find the siphons that correspond to these linearly inde-
pendent vectors. These siphons are non-RSMSs.

Let (N, M,) be a net system, V be the set of SMSs of N, and VRCV be the set of
RSMSs of N. Clearly, VN =V\VR is the set of non-RSMSs. By Theorem 4, not all SMSs
need to consider when we use siphons to control the deadlocks in a Petrt net. This 1s trivial
since 1f all non-RSMSs are controlled, the RSMSs cannot be emptied. Note that the con-
cept of RSMSs is not developed only for PSRs. It 1s suitable for any class of Petri nets,
which is of significance to the design and analysis of control system. Next, we will pro-

pose a deadlock-free design algorithm for Petri nets.

Step 1. Get VN of (N,, M,).

Step 2. H VN =&, go to Step 4, otherwise, go to Step 3.

Step 3. For every SMS, add a control place and make the SMS controlled, then go to
Step 1.

Step 4. The final net system (N;, M;) is deadlock-free. And go to Step 5.

Step 0. Over,

Next, we will make some explanations for this algorithm. Suppose that there are &
SMSs and m deadlock markings in the initial net system (we assume 4 SMSs are all non-
RSMSs, which is certainly the worst case). Add £ control places and £ SMSs become con-
trolled. By the definitions of SMSs and PSRs, we have “"(p;) [1Pr=(ps) "[1Pr=¢, Vr
€ Pr, tNr'=¢, Yr&EPr, if 3t€T,, rE 't, then 3¢’ €T, r&t' ", Yr€Pr, YiEN,,
' r(\T:|=1r"NT;|. And due to the properties of PSRs and Theorem 3, the number of
deadlock markings in the extended net system will not be greater than that of the initial
one (Note that new siphons will generate if new places are added. So the number of si-
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phons in the extended net may excess that of the initial one. However, the number ot the
controlled siphons in the extended net system is much greater than that of the old one).
Assuredly, the algorithm will terminate after finite iterations. Furthermore, this iteration
process will have a quick convergence if we consider the existence of RSMSs,

Of course, not any Petri net can be enforced to be deadlock-free or live via adding
some control places. [ 11 ] shows that only (partially) repetitive Petri nets can be enforced
to be live (deadlock-free). And a PSR is repetitive (see property 5 of PSRs) so this algo-
rithm is feasible.

6 Fairness is kept in the deadlock-free Petri nets

Theorem 6. A PSR (N,, M,) 1s enforced to be a fair net (N;, M;). (N,, M,) 1s en-
forced to be adeadlock-free net system (N, M) via adding some places to make all SMSs
controlled. (N, M) is a fair net,

Proof. We have to prove that (N, M) has a unique T-invariant J = (1,++,1)" and
| J || =T, where T is the set of transitions of N and N;,. The mathematical induction o-
ver the number of SMSs is employed here.

First, we assume (N, , M,) has only one SMS, D={p;y***, p;» >, ps;. Let U=(0,
o0 0,1, 500051, 500, 1,,0, +=+,0). So we have [N |=[[ N, JIU « [N, ]}"and (U * [N, ] -
J=0dueto[N;]*»J=0. Hence [N] * J =0 holds. Next, we will prove J=(1,-,1)" is
unique. By contradiction. Suppose that N has the other T-invariant J "y J'~J. Since N, is
a fair net, J is the unique T-invariant of N;. So we have [N, ] ¢« J=0=> [N, ] * J #0=>
[N] e« J'540. Hence, J' is not a T-invariant of N. And there is a contradiction with the
fact that N has the other T-invariant J'. That means J=(1,+++,1)T is the unique T-invari-
ant of (N, M),

Next, we assume that the theorem holds when (N;, M;) has L SMSs, Following the

case when (N;, M,;) has only one SMS, we can have that the conclusion also holds when
(N,, M,) has L+1 SMSs., Therefore, the theorem holds.

Theorem 7. A fair and deadlock-free Petri net (N, M) is live,
Proof, By contradiction. We assume that (N, M) is just deadlock-free but not live.
Hence, there exist a live transition ¢, a dead transition ¢ , and an occurrence sequence ¢

such that YmE N, # (g, t)>m and # (o, t') =0 hold. This is contradictive with the
fairness of net N. Consequently, (N, M) is live.

7 Example

An FMS cell consists of four machine tools, M1, M2, M3, and M4, three robots,
R1, R2, and R3, two input buffers, Il and I2, and three output buffers, O1, O2, and
(O3. The cell can produce two kinds of products, P1 and P2, with the processing routings
as follows. P1; I1--R1—+-M3—>R3—>M4—-R3—01 or I1-R1->M1—->R2—>M2-—+02 and
P2 I2—>M2—+R2—+>M1—-+03. The Petri net model of this cell 1s shown in Figure 1.

(Ny, M) is a PSR with three T-invariants, || J, || ={t1 22y t3s tes ts ts1s || Jo |
={t), try tgs Loy tio}s and || J5 || ={tus t12» t135 tiu}. For Ji, we add place p; such that
"pn = {2, } (Note that ¢, cannot be selected as the input transition of p;,). Similarly, one
can get “p;; ={t;tand "p;3;=1{t;}. The extended net system (N;, M;) with added places
pns pj2 and pj; is shown in Figure 2. {p;;|1=1, 2, 3} 1s the support of a P-invariant of
N;. So equation (2) holds. By solving (2), we have two solutions, 1) z,, =—1, y; =
—1, 2,,=—1, and other elements are zero, and 2) z5;;=—1, yp,=—1, 2z,,=—1, and
other elements are zero. The fair net system (N,, M,) is shown in Figure 3 if we choose
the first solution, where M, (p,)) =M, (p,) =9, M, (p;.) =M, (p1s) =8, M, (p;3) =
M{j (P} ) =9,
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Fig.1 Petri net model (Ny, M) for an FMS  Fig. 2 Petrni net model(N,, M) with state observers

fhh ty Iz ly ts Ly t7 Ity lty Ly Lt tiz Lz Iy
- I 1 T3 T XTs Xis Tz Xoe Tz T Ty Xag Xz Tag
i Yz Yis Yie Yis Yis 1 ver ez Yoo Ymi Vi Vi Yaa
L 2 %2 %3 Ry Xys X X X220 Rp3 Xy b 23 233 23s

There are four SMSs in Figure 3, D, ={pss piss D1zt D2={pss Pi1ss Pss Pists Ds
{Pss Przs Pios on}a and D4:{P99 Dizs Piss Pigos P . We can have Ap, =(0,0,0,0,0,
1.9,0,0,0,0,0,0,0,0,1,1,0,0,0), Ap,=(0,0,0,0,0,0,0,1,0,0,9,0,1,0,0,0,0,1,1,
0), A =(0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1), Aps=(0,0,0,0,0,0,0,0,1,0,
0,0,1,0,0,0,0,1,1,1), »5 =(0,0,—1,0,1,0,0,0,0,0,0,0,0,0), np=(0,0,0,0,0,0,
-1,1,0,0,0,—1,1,0), nh=1(0,0,0,0,0,0,0,—1,1,0,—1,1,0,0), and 55 =(0,0,0,0,

T ‘@ﬁl

[19191]' :OT(Z)

|

Fig.3 A fair Petri net system{(N,, M) Fig.4 A live and fair net system (N, M)
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0,0,—1,0,1,0,—1,0,1,0). So we have np, = 9p: + 9ps and M, (D) >M, (D) + M, (Ds)
—2. Hence D, is an RSMS with respect to D;and D;. Add places p,1» pq» and py; such
that D,, D,, and D; become controlled. So D, is controlled. The net with p,, , ps,» and
D23 contains a new SMS, D;={ps» piss Pazs P23). Add place p;, to make D; controlled.
Now there is no SMS in the extended net and hence it is deadlock-free, as shown in Figure
4, where M;(py) =M, (Plﬁ)_l_MZ (Pn')'"‘l:zs Ma(Pzz) = M, (P13)+Mz (Pm)"'l:z:
M, (ps)=M,(p1s) T M, () —1=2, and M; (py) =M, (P ) + M;(py3) —1=3. The net

system in Figure 4 is fair and live.

8 Conclusion and discussion

Based on the T-invariants, we develop a design method of fairness for a class of
bounded Petri nets. Then a design approach for deadlock-free Petri nets is presented due to
P-invariants and controlled siphons. We have also proved that a fair and deadlock-free net
system is a live one. These techniques are demonstrated with an example. The results ob-
tained show that the concept of RSMSs proposed in this paper can be of great significance
to the simplification of the design and analysis of the control systems for FMSs. For in-
stance, the Petri net model for an FMS cell*® has 18 SMSs while the number of non-
RSMSs 1s only six. That means 12 SMSs need not consider when we try to ensure no si-
phon to be emptied. For this example, 12 places and 74 arcs are saved using the concept of
RSMSs. The further research interests include what kind of Petri nets can be enforced to
be live via adding control places and how to guarantee no siphon to become emptied when
there are uncontrolled transitions in a Petri net.
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Call for Papers
International Symposium on Plant Modeling, Simulation,
Visualisation and their Applications (PMA03)
Beijing, October 13~16, 2003

This symposium (PMAO3)is a great opportumity for multidisciplinary exchanges around real and virtual
plant modeling and their applications in biology, agronomy, environmental sciences, teaching and multime-
dia,

PMAG3 will feature plenary lectures, tutorials, tools and technical application-oriented presentations
and expositions.

Both Tutorial and scientific sessions will be held according to these main topics:

 Plant architecture and physiology for modeling

» Plant Models and Simulations

« Modeling and simulation of the environmental factors atfecting plant growth
» Computer graphics and Applications of modeling

Exhibition is dedicated to posters, prototype software tools, and commercial software tools presenta-
tions,

Important dates are;

Paper submission 2003, March 1st
Notification 2003, May 1st
Early registration 2003, May 1st
Camera ready 2003, June lst

Contact: pma03(@ liama. ia. ac. cn Web site: http.//liama. ia. ac. cn/~PMAO3



