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Abstract A model-based fault tolerant control approach for hybrid linear dynamic systems is
proposed in this paper. The proposed method, taking advantage of reliable control, can maintain the
performance of the faulty system during the time delay of fault detection and diagnosis (FDD) and
fault accommodation (FA), which can be regarded as the first line of defence against sensor faults.
Simulation results of a three-tank system with sensor fault are given to show the efficiency of the
method.
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1 Introduction

The study of hybrid systems (HS) in control is motivated by the fundamentally hybrid nature of
many modern control systems[1]. However, many results about HS only consider the fault-free case.

Fault-tolerant control (FTC), which rests on fault detection and diagnosis (FDD) and fault ac-
commodation (FA), has received considerable attention in the past two decades[2,3]. But the hybrid
nature of systems requires new forms of FDD and FTC analysis. Only a few existing papers are devoted
to FDD and FTC of hybrid systems[4∼7]. Those techniques are mainly based on hidden Markov model
(HMM), statistical method and global Petri nets and so on. In [7], a switching-based FTC method was
proposed, whose availability largely depends on the value of states when faults occur. Little attention
has been paid to the time delay between the FDD and FA due to physical limitations[8] . During this
time delay, the faulty systems still work under the original control law, and control inadmissibility
may cause high risk of the system. Therefore, some measures have to be taken to avoid the rapid
deterioration of the system performance.

The main contribution of this paper is: 1) to model the HS and detect the current mode by bond
graph method. 2) to propose an observer-based state feedback strategy to guarantee the stability of
each mode of HS. 3) to design a set of observers according to different modes, which can maintain the
performance of the faulty system during the time delay of FDD and FA. The proposed method can be
regarded as the first line of defence when sensor faults occur.

2 System Description

2.1 Characteristics of hybrid linear system and its stability

Let us start from a general description of controlled hybrid systems in the form

ẋ(t)=As(t)x(t) +Bs(t)u(t), y(t) = Cs(t)x(t)

s(t)=ϕ(x(t), s(t−),d(t), t) (1)

where x(t) is the state vector, u(t) is thye control vector, s(t) ∈ {1, 2, . . . ,M} represents a discrete state
at instant t that indexes the vector fields determining the states , d(t) is a “discrete event” (possibly
control) input, and ϕ(t) is a transition function.

The existence of a common Lyapunov function leads to the stability of system (1). However, this
condition is restrictive in many real situations. We have the following theorem[1]:

Theorem 1. If some Ai have eigenvalues in the closed right-half complex plane, then a sufficient
condition for the existence of s(t) and u(t) to produce a stable x satisfying system (1) is that there

exist αi > 0,
X

i

αi = 1, such that Aeq =

MX
i=1

αiAi is stable matrix.

2.2 Description of three tanks system
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Consider a typical example of hybrid system: the three-tank system illustrated in Fig. 1, which
has been investigated intensively recently in [4,6,9]. This system consists of tanks, flow sources, outlet
pipes, and connecting pipes. Two types of discrete events may occur in the system: 1) (External jumps)
Opening and closing valves change the system configuration; 2) (Autonomous jumps) The levels of fluid
in the tanks exceeding a predefined value cause a flow in the pipes. The proposed method in this paper
is based on the three-tank system described above, while the theory below can be applied to a more
general class of hybrid systems, especially for those HS whose mode transitions are autonomous or
whose states are required to be in a stability region all the time.

Fig. 1 The three-tank system

The fault tolerant control strategy in this paper involves three steps:

1) Determine the current mode by bond graph;

2) Switch to the relevant observer;

3) Apply the reliable state feedback control.

The whole framework of the proposed method is shown in Fig. 2. The part represented by dashed
line is FDD and FA (see [2,3] and reference therein for some related research), which is not the focus
of this paper. What we focus on is the part “Reliable control”. We will discuss bond graphs method
and the state feedback control respectively in the following sections.

Fig. 2 The whole framework of FTC for hybrid system

3 Bond graphs

Bond graphs method developed in [9,10] can be used for representation of the system and detection
of the mode change. In [4] and [6], the bond graph method was applied to the three-tank system. The
bond graph is a graph in which nodes represent conservation of energy equations, and terminal nodes
represent either system elements such as resistance, capacitance, inertia or sources. A bond is a power
interconnection between elements that exchange energy. Power variables can be divided into two parts:
1) effort, which represents either force, torque, pressure, or voltage; 2) flow, which represents either
velocity, rotational frequency, volume flow rate, or current. The numbers of the bonds correspond to
the power variables.

The nodes of a bond graph are of two types: 1-junction and 0-junction. For a junction, the power
of all bonds adds to zero at each moment. For the 1-junction, the flow is common to all the bonds and
the algebraic sum of all efforts is zero. For the 0-junction, the effort is common to all the bonds and
the sum of flows equals zero.
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There exist standard techniques to build bond graph models of systems based on physical princi-
ples[4,9,10]. Fig. 3 shows the switched bond graph model of the three tank system, which depicts
the sequential automata for the switched junctions 11, 12, 14, 16 (externally controlled) and 13, 15 (au-
tonomously controlled). We enumerate states of the hybrid automata dynamically as system behavior
evolves. For any given state we identify all its neighboring states by changing the status of each switch
in the switched bond graph one at a time. We can determine the transition and reset conditions for
these transitions from the local sequential automata of the corresponding switched junction. The states
equations can be given from the bond graph as:

ḣ =Ai(Ca1, . . . , Ca3, R1, . . . , R6)h +Bi(Ca1, . . . , Ca3, R1, . . . , R6)f

y =Cih (2)

When the current mode is determined by bond graph, the reliable state feedback control will be applied,
which will be discussed in Section 4.

Fig. 3 Bond graph of three-tank system

4 Observer-based state feedback control

4.1 State feedback and vector-valued decision

The observer designed is based on [11] and [12]. Consider the system of (1) at the ith mode :

ẋ(t) = Aix(t) +Biu(t), y(t) = Cix(t) (3)

where y(t) is the output vector, which is assumed to be divided into three parts: y(t) = [y1(t) y2(t)
y3(t)]

T , such that x(t) is detectable by using only yi(t)(i = 1, 2, 3) and u(t). Under this assumption,
Ci can be divided into three matrices as Ci = [Ci1 Ci2 Ci3]

T , where (Cij , Ai) is a detectable pair,
j = 1, 2, 3. Cij represents the sensor set (ij). Consider the following observers for mode i:

Observerij : ˙̂xj(t) = Aix̂j(t) +Biu(t) + Lij

�
ŷ(t) − (yj(t) + ωj(t))

�
, ŷj(t) = Cij x̂j(t)

where x̂j(t) is the jth estimated value of x(t), ωj(t) is bounded measurement noise, Lij is such that
(Ai + LijCij) is a stable matrix. The reliable state feedback adopts one out of the three estimated
states, x̂1(t), x̂2(t), x̂3(t), as the value x̂(t), which is used in the state-feedback u(t) = Fix̂(t) + v(t),
where Fi is such that Ai + BiFi is a stable matrix, v(t) is an additional control input. Define that

‖ A ‖= max
i

X
j

| aij |, where aij is the element at the ith row and the jth column of A. If

‖ x̂p(t) − x̂q(t) ‖ = max

�
‖ x̂p(t) − x̂q(t) ‖, ‖ x̂q(t) − x̂r(t) ‖, ‖ x̂p(t) − x̂r(t) ‖

�
(4)

where p, q, r ∈ {1, 2, 3}, p 6= q 6= r, then the adopted value is x̂(t) = x̂r(t).
4.2 Augmented system for faulty case

Denotes the estimation error of Observerij by ej(t) = x̂j(t)−x(t), and x̄(t) , [x(t) e1(t) e2(t)

e3(t)]
T , ū(t) , [v(t) ω1(t) ω2(t) ω3(t)]

T , ȳ(t) , [y(t) x̂1(t) x̂2(t) x̂3(t)]
T . Then the augmented

system can be written as

˙̄x(t) = Āix̄(t) + B̄iū(t), ȳ(t) = C̄ix̄(t) (5)
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where

Āi =

26664 Ai + BiFi BiFi 0 0

0 Λi1 0 0

0 0 Λi2 0

0 0 0 Λi3

37775 , B̄i =

26664 Bi 0 0 0

0 −L1 0 0

0 0 −L2 0

0 0 0 −L3

37775 , C̄i =

26664 Ci 0 0 0

I I 0 0

I 0 I 0

I 0 0 I

37775
where Λij = Ai + LijCij . When one of sensors in sensor set (ij) is out of order, the faulty situation

can be formulated by C′

ij = diag[1, . . . , 1, β, 1, . . . , 1]Cij , where 0 < β < 1. Without loss of generality,
we assume that if a sensor in sensor (i3) is faulty, then

Āi =

26664 Ai + BiFi a1BiFi a2BiFi a3BiFi

0 Ai + Li1Ci1 0 0

0 0 Ai + Li2Ci2 0

L3C̄3 0 0 Ai + Li3Ci3

37775
where a1, a2, a3 are setting 0 or 1, and ai = 1 only when x̂i(t) is adopted. Note that Āi is stable when
x̂1(t) or x̂2(t) is adopted, and Āi is not always stable when x̂3(t) is adopted. The following theorem will
show that even if an incorrect estimated state is adopted and the system is in an unstable structural
state, the observers connected to healthy sensor sets are still making steady progress.

Theorem 2. The system is BIBO stable, i.e., ‖ x̄(t) ‖< ∞, ‖ ȳ(t) ‖< ∞ for any ū(t) against
any sensor fault only in one sensor set.

The proof of Theorem 2 is based on two lemmas in [11] and some related work in [12]. We can
obtain that there exist M̄ > 0 and η̄ > 0 satisfying ‖ Φ(t, ti0) ‖6 M̄e−η̄t, where ti0 denotes the initial
time when mode i is activated. Then the transition of (5) is given by

x̄(t) = Φ(t, ti0)x̄(ti0) +

Z t

t0

Φ(t, τ )B̄ū(τ )dτ (6)

We can conclude that ‖ x̄(t) ‖<∞, ‖ ȳ(t) ‖< ∞ for any ū(t) in this domain. Considering the domain
‖ e3(t) ‖6 ψ(t), where ψ(t) is defined in [11], we have

ẋ(t) = (Ai +BiFi)x(t) +Biv(t) +BiFiē(t) (7)

where ē(t) is one of e1(t), e2(t) and e3(t). e1(t), e2(t) are bounded. Therefore, x(t) is bounded against
any v(t). This completes proof of the theorem.

The block diagram of the reliable state feedback control is represented in Fig.4.

Fig. 4 The block diagram of reliable state feedback control

4.3 The stability of overall HS

For the overall HS, the method in sections 4.1 and 4.2 needs to be modified. The system will
switch to the relevant observer at each transition time, and the initial states of the current observer are
chosen the same as the final states in the previous mode under both controlled jumps and autonomous
jumps.

Considering the stability of the overall systems, several tools (e.g. Multiple Lyapunov functions[1,7],
etc.) can be used, which should be considered in the design of FDD and FA methods for hybrid systems
(see [7] for example). The proposed method in this paper, together with these FDD and FA methods,
can provide an integral FTC strategy for hybrid systems.
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5 Implementation and simulation results

Consider the three tank system described above. Two modes are designed. Mode 1: all the valves
are open except R1 and R6 , and the fluid levels in the tanks are higher than pipes R3 and R5; Mode
2: open R1 and R6, and the fluid levels in the tanks are still higher than pipes R3 and R5. The state
equations of Modes 1, 2 can be obtained as[4]

Mode 1 :

264 ḣ1

ḣ2

ḣ3

375 =
h

Ξ 1 Ξ 2 Ξ 3

i264 h1

h2

h3

375+

2664 1

Ca1

0

0

3775 f
where

Ξ 1 =

26664−

1

Ca1R2
−

1

Ca1R3
1

Ca2R2
+

1

Ca2R3
0

37775 , Ξ 2 =

2666664 1

Ca1R2
+

1

Ca1R3

−

1

Ca2R2
−

1

Ca2R3
−

1

Ca2R4
−

1

Ca2R5
1

Ca3R4
+

1

Ca3R5

3777775
Ξ 3 =

26664 0
1

Ca2R4
+

1

Ca2R5

−

1

Ca3R4
−

1

Ca3R5

37775 , Mode 2 :

264 ḣ1

ḣ2

ḣ3

375 =
h

Ξ ′

1 Ξ ′

2 Ξ ′

3

i264 h1

h2

h3

375+

2664 1

Ca1

0

0

3775 f

where

Ξ ′

1 =

26664−

1

Ca1R1
−

1

Ca1R2
−

1

Ca1R3
1

Ca2R2
+

1

Ca2R3
0

37775 , Ξ ′

2 =

2666664 1

Ca1R2
+

1

Ca1R3

−

1

Ca2R2
−

1

Ca2R3
−

1

Ca2R4
−

1

Ca2R5
1

Ca3R4
+

1

Ca3R5

3777775
Ξ ′

3 =

26664 0
1

Ca2R4
+

1

Ca2R5

−

1

Ca3R4
−

1

Ca3R5
−

1

Ca3R6

37775
h1, h2, and h3 correspond to the heights in the three tanks, and f is the flow into tank 1. These

state equations are modelled based on the circuit equivalence relationship of three tanks[4,9]. Cai is
equivalent to Capacity, and Ri is equivalent to Resistance. Ca1=Ca2=Ca3. The values of Ri and Cai

are chosen appropriately such that Ai satisfies Theorem 1.
Assume that a sensor fault occurs at mode 2 and height of R3 (R5) is chosen as 0.5m, and assume

the third sensor channel of C3 is faulty and the degradation percentage is 40 percent. Fig. 5 shows the
heights of fluid in three tanks. From t = 0s to t = 2s, the system is working at Mode 1 and after
t = 2s, the system switches to Mode 2. When fault occurs at t = 4s, trajectory of the height of fluid
in each tank changes unexpectedly. It can be seen that system′s performance can be maintained under
the reliable state feedback control.

Fig. 5 Heights of fluid in the tank system
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6 Conclusion

In this paper, a model-based fault tolerant control approach for hybrid linear dynamic system is
proposed. The proposed method, based on bond graph modelling and reliable state feedback control,
effectively maintains the system’s performance when sensor faults occur. This method can be regarded
as the first line of defence of system against faults during the time delay of FDD and FA, which can be
extended to more general hybrid systems.

Note that a complex system can not just depend on the reliable control strategy, the combination
of active FTC and reliable control is important. Future work will be focused on the design of control
strategy which can take both the advantages of active FTC and reliable control.
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