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Abstract By means of matrix decomposition method a criterion is presented for the admissibility
of T-S fuzzy descriptor system. Then, the problem of passivity control is studied for a kind of T-S
fuzzy descriptor system with uncertain parameters, and sufficient conditions which make the closed-
loop system admissible and strictly passive are obtained based on linear matrix inequality (LMI).
The nonstrict LMIs restricted conditions which characterize the descriptor system are transformed
into strict ones, so testing admissibility and passivity of the system can be finished simultaneously.
The design scheme of state feedback controller is also obtained. Finally, a numerical example is given
to show the validity and feasibility of the proposed approach.
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1 Introduction

The Takagi-Sugeno (T-S for short) fuzzy control method is recognized as an effective one in

approximating or describing a complex nonlinear system. Fuzzy control technique has been extensively

used in control of nonlinear system for more than two decades[1]. In 2000, Taniguchi T first presented the

T-S fuzzy descriptor system model and gave an example to illustrate the advantage of fuzzy descriptor

system over the original one[2]. It also demonstrates the importance of fuzzy descriptor system.

Motivated by the dissipation of energy across resistors in an electrical circuit, the concept of

passivity of an input-output system has been widely used in stability analysis for nonlinear systems[3].

Willems J C studied passivity for nonlinear system in state space representations in terms of using

Lyapunov functions[4,5]. Byrnes C I addressed that finite-dimensional nonlinear system was render

passive via state feedback and provided a rather complete answer in terms of geometric nonlinear

system theory[6]. Sun W Q pointed out that if the nonlinearity or uncertainty could be characterized

by a positive real system, then the classical results in stability theory could be used to guarantee robust

stability provided that an appropriate closed-loop system was strictly positive real[7]. In recent years,

much attention has been given to the study on dissipation and passivity[8,9]. It enriches and develops

the Lyapunov stability theory.

However, little attention has been paid to the dissipation and passivity control for the T-S fuzzy

descriptor systems. In this paper, we consider the problem of passivity control for a kind of uncertain

T-S fuzzy descriptor system. Since many results of the descriptor system cannot be directly used for

the system[10∼12], we present a necessary and sufficient condition to check admissibility for the T-S

descriptor system. The notion of strict passivity is proposed for the system. The sufficient conditions,

which make the closed-loop system admissible and strictly passive, are obtained for the system based

on linear matrix inequalities (LMIs). The nonstrict LMIs restricted conditions, which characterize the

descriptor system, are transformed into the strict ones. It overcomes the limitation of LMI Toolbox. So

testing the admissibility and passivity of the system can be finished simultaneously by LMI Toolbox.

The design scheme for the state feedback controller is also given. Finally, a numerical example is given

to show the validity and feasibility of the proposed approach.

2 Problem formulation and preliminaries

In this section, we consider an uncertain T-S fuzzy descriptor system, and its ith fuzzy rule is of

the following form:

Ri : if ξ1(t) is M1i and ξ2(t) is M2i · · · and ξp(t) is Mpi

1) Supported by National Natural Science Foundation of P.R. China (60574011), the Distinguished Teacher Funds
of Liaoning Universities (124210), and the Key Laboratory Funds of Liaoning Universities of Intelligent Control
Theory and Applications
Received August 8, 2005; in revised form December 12, 2005



No. 5 ZHU Bao-Yan et al.: Passivity Control for Uncertain T-S Fuzzy Descriptor Systems 675

then Eẋ(t) = (Ai + ∆Ai)x(t) + B1iw(t) + (B2i + ∆B2i)u(t) (1a)

z(t) = (Ci + ∆Ci)x(t) + D1iw(t) + (D2i + ∆D2i)u(t), i = 1, 2, · · · , r (1b)

where Mji(j = 1, 2, · · · , p) is the fuzzy set, r is the number of if-then rules, x(t) ∈ Rn is the state

vector, u(t) ∈ Rm is the control input, w(t) ∈ Rl is the exogenous input, and w(t) ∈ L2[0,∞).

z(t) ∈ Rl is the controlled output, E and Ai, B1i, B2i, Ci, D1i, D2i are known constant matrices with

appropriate dimensions. E is the singular matrix and rankE = n1 < n. The ξ1(t), ξ2(t), · · · , ξp(t) are

premise variables which may be functions of the state variables. Let ξ(t) = [ξ1(t), ξ2(t), · · · , ξp(t)]
T. The

matrice ∆Ai, ∆B2i, ∆Ci, ∆D2i represent the time-varying parametric uncertainties with the following

structure:

[∆Ai ∆B2i] = H1iFi[E1i E2i], [∆Ci ∆D2i] = H2iFi[E1i E2i], i = 1, 2, · · · , r

where H1i, H2i, E1i, E2i are known constant matrices with appropriate dimensions, and Fi are unknown

real matrices satisfying FT
i Fi 6 I . By using the fuzzy inference methods with singleton fuzzifer and

weighted average defuzzifer, the overall fuzzy model for the system can be inferred as follows:

Eẋ(t) =
rX

i=1

hi(ξ(t))[(Ai + ∆Ai)x(t) + B1iw(t) + (B2i + ∆B2i)u(t)] (2a)

z(t) =
rX

i=1

hi(ξ(t))[(Ci + ∆Ci)x(t) + D1iw(t) + (D2i + ∆D2i)u(t)], i = 1, 2, · · · , r (2b)

βi(ξ(t)) =
PY

j=1

Mji(ξj(t)) > 0, hi(ξ(t)) =
βi(ξ(t))

rX
i=1

βi(ξ(t))

> 0,

rX
i=1

hi(ξ(t)) = 1

where hi(ξ(t)) can be regarded as the normalized weight of each if-then rule.

Consider T-S fuzzy descriptor system of the following form:

Eẋ(t) =
rX

i=1

hi(ξ(t))Aix(t) (3)

Definition 1. System (3) is said to be regular if det(sE−
rX

i=1

hi(ξ(t))Ai) is not identically zero for

any t > 0. System (3) is said to be impulse-free if it is regular and degsdet(sE−

rX
i=1

hi(ξ(t))Ai) = rankE

for any t > 0. System (3) is said to be stable if it is regular and satisfies Re(s) < 0, ∀t > 0, for

s ∈ σ(E,

rX
i=1

hi(ξ(t))Ai), where σ(E,

rX
i=1

hi(ξ(t))Ai) =

(
s|det(sE −

rX
i=1

hi(ξ(t))Ai) = 0

)
. System (3)

is said to be admissible if it is regular, impulse-free and stable.

Theorem 1. System (3) is admissible if and only if there exists a common nonsingular matrix

P ∈ Rn×n such that the following inequalities hold.

E
T
P = P

T
E > 0 (4)

(
rX

i=1

hi(ξ(t))Ai)
T
P + P

T(
rX

i=1

hi(ξ(t))Ai) < 0, i = 1, 2, · · · , r, ∀t > 0 (5)

Proof. Sufficiency. Suppose s ∈ σ(E,

rX
i=1

hi(ξ(t))Ai), and that the generalized eigenvector x ∈ Cn

is consistent with it. We can obtain that 2Re(s)x∗ETPx < 0. Thus, system (3) is regular and stable.

So there exist invertible matrices M1 and N1 such that

M1EN1 = diag(In1
, N) (6)
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M1(
rX

i=1

hi(ξ(t))Ai)N1 = diag(Ã1, In2
) (7)

where Ã1 ∈ Rn1×n1 , N ∈ Rn2×n2 , N is a nilpotent matrix, n1 + n2 = n, Ã1 and N are related to

membership functions.

Suppose Nh−1 6= 0, Nh = 0, h > 1. Partition M−T
1 PN1 to conform with (6) and (7), that is,

M
−T
1 PN1 =

�
P1 P2

P3 P4

�
(8)

From (4), (5) and (8), it can be shown that P4 + PT
4 < 0, and NTP4 = PT

4 N > 0. Then it follows that

0 = (NT)h−2
P

T
4 N

h + (NT)h
P4N

h−2
< 0

It is a contradiction. So that N = 0. Namely, system (3) is impulse-free. Therefore, it is admissible.

Necessity. Suppose that system (3) is regular and impulse-free. Then there exist invertible matrices

M2 and N2 such that

M2EN2 = diag(In1
, 0) (9)

M2(
rX

i=1

hi(ξ(t))Ai)N2 = diag(Ā1, In2
) (10)

where Ā1 ∈ Rn1×n1 , N ∈ Rn2×n2 , N is a nilpotent matrix, n1 + n2 = n, Ā1 and N are related to

membership functions. Since system (3) is stable � there exists a positive definite symmetric matrix

P11 ∈ Rn1×n1 such that ĀT
1 P11 + P11Ā1 < 0. Now define a matrix P as

P = M
T
2

�
P11 0

0 −In2

�
N

−1
2

It is easy to verify that P in the above form is a nonsingular matrix and satisfies (4) and (5). �

The following lemma will be used later.

Lemma 1[13]. For matrices D and G with appropriate dimensions and symmetric Y ,

Y + DFG + G
T
F

T
D

T
< 0

for all F satisfying FTF 6 I , if and only if there exists some scalar ε > 0 such that

Y + εDD
T + ε

−1
G

T
G < 0

3 Passivity control

Definition 2. The system of the form (2) is said to be strictly passive if there exists a positive

constant δ, for each solution with initial condition x(0) = 0, such that the following inequality

V (x(τ )) 6

Z τ

0

z
T(t)w(t)dt− δ

Z τ

0

w
T(t)w(t)dt

holds for all positive constants τ and w(t) ∈ L2[0, τ ], where V is a nonnegative continuous real function

satisfying V (0) = 0.

For the fuzzy model (2), we construct the following fuzzy controller via the PDC:

u(t) =
rX

i=1

hi(ξ(t))Kix(t) (11)

where Ki is the local feedback gain matrix. By substituting (11) into system (2), we obtain the following

closed-loop system

Eẋ(t) =

rX
i=1

rX
j=1

hi(ξ(t))hj(ξ(t)){[(Ai + ∆Ai) + (B2i + ∆B2i)Kj ]x(t) + B1iw(t)} (12a)
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z(t) =
rX

i=1

rX
j=1

hi(ξ(t))hj(ξ(t)){[(Ci + ∆Ci) + (D2i + ∆D2i)Kj ]x(t) + D1iw(t)} (12b)

Theorem 2. For system (12) with the zero initial condition, if there exist a common nonsingular

matrix P ∈ Rn×n and a positive constant δ such that the following LMIs

E
T
P = P

T
E > 0 (13a)

rX
i=1

hi(ξ(t))(−D1i − D
T
1i + δI) < 0 (13b)

rX
i=1

rX
j=1

hi(ξ(t))hj(ξ(t))

�
∆ Ω

∗ (−D1i − DT
1i + δI)

�
< 0, i, j = 1, 2, · · · , r, ∀r > 0 (13c)

hold then system (12) is admissible and strictly passive, where the asterisk denotes the transposed

elements of symmetric positions in the matrix, and

∆ = [(Ai + ∆Ai) + (B2i + ∆B2i)Kj ]
T
P + P

T[(Ai + ∆Ai) + (B2i + ∆B2i)Kj ]

Ω = P
T
B1i − [(Ci + ∆Ci) + (D2i + ∆D2i)Kj ]

T

Proof. Consider the nonnegative functional V (x(t)) of the form V (x(t)) =
1

2
x

T(t)ET
Px(t).

From Theorem 1 and Definition 2, we can obtain that system (12) is admissible when w(t) = 0 and

V (x(τ )) 6

Z τ

0

z
T(t)w(t)dt −

1

2
δ

Z τ

0

w
T(t)w(t)dt

That is, system (12) is admissible and strictly passive. �

Theorem 3. For system (12) with the zero initial condition, if there exist a common nonsingular

matrix X ∈ Rn×n, matrix Ni and positive constants δ, εi, εij such that the following LMIs

XE
T = EX

T
> 0 (14a)

− D1i − D
T
1i + δI < 0, i = 1, 2, · · · , r (14b)2664∆1 Ω1 εiH1i Ξ1

∗ −D1i − DT
1i + δI −εiH2i ET

2i

∗ ∗ −εiI 0

∗ ∗ ∗ −εiI

3775 < 0, i = 1, 2, · · · , r (14c)26666664∆2 Ω2 εijH1i εijH1j Ξ2 Ξ3

∗ −D1i − DT
1i − D1j − DT

1j + 2δI −εijH2i −εijH2j 0 0

∗ ∗ −εijI 0 0 0

∗ ∗ ∗ −εijI 0 0

∗ ∗ ∗ ∗ −εijI 0

∗ ∗ ∗ ∗ ∗ −εijI

37777775 < 0, i < j 6 r

(14d)

hold then system (12) is admissible and strictly passive, the state feedback controller

u(t) =
rX

i=1

hi(ξ(t))NiX
−T

x(t), where the asterisk denotes the transposed elements of symmetric posi-

tions, and

∆1 = XA
T
i + AiX

T + N
T
i B

T
2i + B2iNi

∆2 = XA
T
i + AiX

T + N
T
j B

T
2i + B2iNj + XA

T
j + AjX

T + N
T
i B

T
2j + B2jNi

Ω1 = B1i − XC
T
i − N

T
i D

T
2i

Ω2 = B1i − XC
T
i − N

T
j D

T
2i + B1j − XC

T
j − N

T
i D

T
2j

Ξ1 = XE
T
1i + N

T
i E

T
2i, Ξ2 = XE

T
1i + N

T
j E

T
2i, Ξ3 = XE

T
1j + N

T
i E

T
2j

X = P
−T

, Ni = KiX
T
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Proof. By using Theorem 2, Lemma 1, the Schur complement Lemma and the elementary

transformation of matrix, we can infer the theorem. �

Remark 1. When normalized membership functions are hi(ξ(t)) = 1, hj(ξ(t)) = 0, ∀j 6= i,

δ = 2, rankE = n, and the system is without uncertain parameters, Theorm 2 is the sufficient condition

to check the strictly positive real character for original linear system[7]. When normal membership

functions are hi(ξ(t)) = 1, hj(ξ(t)) = 0, ∀j 6= i, Theorem 2 is the sufficient condition to test strict

passivity and admissibility for descriptor system with uncertain parameters.

Now, we deal with the nonstrict matrix inequality constraint in (13a). Without loss of generality,

we assume E =

�
In1

0

0 0

�
. Partition P =

�
P1 P2

P3 P4

�
to conform with E. We can infer that the

constraint in (13a) is equivalent to P =

�
P1 0

P3 P4

�
, P1 > 0, detP4 6= 0. Thus, we obtain XET =

EXT =

�
P−1

1 0

0 0

�
> 0. Therefore, the following theorem holds.

Theorem 4. For system (12) with the zero initial condition, if there exist a common nonsingular

matrix X ∈ Rn×n, matrix Ni and positive constants δ, εi, εij such that the LMIs (14b), (14c) and (14d)

hold, then system (12) is admissible and strictly passive, where X = P−T =

�
P−1

1 −P−1
1 PT

3 P−T
4

0 P−T
4

�
:=�

X1 X2

0 X3

�
, X1 = P−1

1 > 0, Ni = KiX
T. The state feedback controller u(t) =

rX
i=1

hi(ξ(t))NiX
−T

x(t).

Remark 2. By Theorem 4, the nonstrict LMIs restricted conditions in (13a), which characterize

the descriptor system, are transformed into the strict ones. So it overcomes the limitation of LMI

Toolbox. Thus we can use the LMI Toolbox to check admissibility and strict passivity only once.

4 Numerical example

Consider the following uncertain T-S fuzzy system

Ri : if x1(t) is Mi

then Eẋ(t) = (Ai + ∆Ai)x(t) + B1iw(t) + (B2i + ∆B2i)u(t)

z(t) = (Ci + ∆Ci)x(t) + D1iw(t) + (D2i + ∆D2i)u(t), i = 1, 2 (15)

The membership functions are chosen as h1(x1(t)) =
x2

1(t)

2
, h2(x1(t)) = 1 −

x2
1(t)

2
, where state vector

x(t) = [xT
1 (t), xT

2 (t), xT
3 (t)]T, xi(t) ∈ R1, i = 1, 2, 3. The control parameters are defined as follows

E =

24 1 0 0

0 1 0

0 0 0

35 , A1 =

24 1 8 1

1 1 7

1 3 5

35 , A2 =

24 2 −7 1

2 0 7

9 1 1

35 , B11 =

24 1 0

1 2

0 1

35 , B12 =

24 1 1

1 0

1 1

35
B21 =

24 1 0

0 1

1 1

35 , B22 =

24 1 3

0 1

2 1

35 , C1 =

�
1 0 1

0 −1 −1

�
, C2 =

�
0.1 4 −1

2 −1 1

�
D11 =

�
1 −0.2

0.1 0.1

�
, D12 =

�
2 0

2 1

�
, D21 =

�
1 −1

1 0

�
, D22 =

�
1 0

1 0

�
, H11 =

24 1 0

0 −1

0 −1

35
H12 =

24 0.1 0

0 −1

0 −0.2

35 , H21 =

�
1 0

2 1

�
, H22 =

�
0 1

0 1

�
, E11 =

�
1 0 1

0 −0.3 −0.2

�
E12 =

�
1 0 1

0 −1 −0.2

�
, E21 =

�
0 0.3

0 0.1

�
, E22 =

�
0.2 0.1

0 1

�
Solving the matrix inequalities in Theorem 4, we can obtain the state feedback controller as

u(t) =

�
x2

1(t)

2

�
247.7694 325.4279 −4.3742

221.5945 300.4592 5.8559

�
+ (1 −

x2
1(t)

2
)

�
442.2767 593.3450 4.6406

338.9410 461.4361 9.8363

��
x(t)

It makes system (12) admissible and strictly passive.
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5 Conclusions

In this paper, we have addressed the problem of passivity control for a kind of uncertain T-S fuzzy

descriptor system. We have given a method to check the admissibility of the system. The controller

which makes the closed-loop system admissible and strictly passive has been obtained in term of LMI

Toolbox. The proposed approach can overcome the limitation of the LMI Toolbox. An example has

been given to show the validity and feasibility of the approach.
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