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Abstract Implementing a control system over a communication network induces inevitable time
delays that may degrade performance and even cause instability. One of the most effective ways
to reduce the negative effect of delays on the performance of networked control system (NCS) is
to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce
network traffic in NCS. A method of fault-tolerant control of networked control system is presented,
which takes into account system response as well as network traffic. The integrity design for a kind
of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control
theory and information scheduling. After detailed theoretical analysis, the paper also provides the
simulation results, which further validate the proposed scheme.
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1 Introduction

Networked control system is one type of distributed control systems. Serial communication net-

work is used to exchange system information and control signals between various physical components

of the system that may be physically distributed[1,2]. Fig. 1 illustrates a typical setup of an NCS.

Compared with conventional point-to-point interconnected control systems, the primary advantages of

NCS are modular and flexible system design (e.g., distributed processing and interoperability), simple

and fast implementation (e.g., reduced system wiring and powerful configuration tools), ease of system

maintenance, and increased system agility. However, implementing a control system over a communica-

tion network induces inevitable time delays that may degrade performance and even cause instability.

Time delays are a function of device processing time and the sharing of the communication medium.

Thus system performance is not only dependent on the performance of its components but also on their

network interaction. Consequently, there are growing theoretical interests in the field of networked con-

trol system. Modeling, analysis, control, optimization of networked control system are main research

topics now[3∼5].

Fig. 1 Typical NCS setup and information flows

With the development of network technology, NCS is more and more popular in most engineering

practices. Because of the complexity induced by network, this kind of automated control system is more

vulnerable to faults. Defects in sensors and actuators, in the process itself, or within the controller can
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be amplified by the networked control system. The closed-loop may hide a fault from being observed

until a failure is inevitable. The consequence could do damage to technical parts of the plant, to

personnel or the environment. A cost effective way to obtain increased availability and reliability in

networked control system is to introduce fault-tolerant control. Therefore, research on fault-tolerant

control of networked control system has great theoretical and applied significance, and it is now a new

research field in which only time delay is considered for NCS at present[6]. In this paper, adjustable

deadbands are explored as a solution to reduce network traffic in NCS, and the integrity design of a

kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control

theory and information scheduling. The new idea about NCS robust fault-tolerant control that links

the quality of control performance (QoP) and quality of network service (QoS) by synthesizing both

control and scheduling schemes is put forward.

2 NCS model under communication constraints

The process to be controlled is assumed to be of the form:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t)

and a discrete controller is

u(k) = Kx(k), k = 0, 1, 2, · · ·

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and A, B, C, K are of compatible dimensions, h is the sampling period.

Assume that the network-induced delay τ is bounded and the packet is transmitted in sequence. The

network time-varying delays can be obtained online[6]. The closed-loop networked control system with

time-varying delays can be described as[1,6]

x(k + 1) = (Â + B̂0,kK)x(k) +
nX

i=1

B̂i,kKx(k − i) (1)

where Â = Φ
Ah, B̂i,k =

R tk
i−1

tk
i

eA(h−s)Bds, where tk
i denotes the ith data package arriving time[6].

The implementation of deadbands results in network traffic reduction while maintaining acceptable

system performance[7]. A node with a deadband compares the value prepared to send to the network,

x, to either the last value sent, xsent , or a constant threshold, δt. If the absolute value of the difference

between x and xsent is within the deadband, δxsent or δt, then no update is sent to the network.

IF |x − xsent | > δxsent (or δt)

THEN

Broadcast x

xsent = x

ELSE

No message broadcast

When the term δxsent is used the deadband becomes a function of the node state and be viewed

as a relative deadband. When δt is used, the deadband remains constant independent of the state.

As the size of the deadband coefficient increases, δ or δt, the node broadcasts less message. Im-

plementing deadbands to reduce network traffic can produce uncertainty in the state of the system.

Since the controller relies on the broadcast state xb to compute the control signal, it is important to

determine whether this uncertainty could drive the system to instability. At any given time, the true

state of the system x is

x = xb ± δxb

In case of the controller node, the control signal it sends to the plant is the following

u = Kxb

The discrete-time version of the control signal is the following

u(k) = K(I + δ)−1
x(k) (2)
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Substituting equation (2) into equation (1), the closed-loop networked control system with time-

varying delays can be described as

x(k + 1) = (Â + B̂0,kK(I + δ)−1)x(k) +
nX

i=1

(B̂i,kK(I + δ)−1
x(k − i)) (3)

Lemma 1[8]. For any compatible dimension vector y and z, zTy + yTz 6 yTy + zTz.

Lemma 2[9]. For any ε > 0, and εETE 6 I , FTF 6 I , then

[G + DF (t)E][G + DF (t)E]T 6 G(I − εE
T
E)−1

G
T +

1

ε
DD

T

3 NCS fault-tolerant control under communication constraints

Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance

under system faults. Integrity design is an important means for the fault tolerant control. Integrity

design is that the system can keep asymptotically stable under some sensor failures or actuator failures.

If system (3) is under sensor failures, then we introduce a switching matrix M , which is between

the feedback gain matrix K and the system state x(kh), where M = diag{m1, m2, · · · , mn}.

Let

mj =

�
1, no sensor fault

0, jth sensor fault
, j = 1, 2, · · · , n, M 6= 0

“1” denotes that the sensor is in the normal situation, “0” denotes that the sensor is in the full fault

situation, and then the closed-loop networked control system can be described as

x(k + 1) = (Â + B̂0,kK(I + δ)−1
M)x(k) +

nX
i=1

(B̂i,kK(I + δ)−1
Mx(k − i)) (4)

For convenience, let K̄ = K(I + δ)−1. Then u(k) = K̄x(k).

x(k + 1) = (Â + B̂0,kK̄M)x(k) +

nX
i=1

(B̂i,kK̄Mx(k − i))

The corresponding integrity design is to find the state feedback gain matrix K̄ such that the

system can keep stable under any sensors failures M ∈ Ω , where Ω denotes the set of all possible sensor

failures switching the matrix.

Theorem 1. Let ‖B̂k‖2 = max
06i6n
i,k∈N

(‖B̂i,k‖2). If there exists positive define matrix, P = PT, such

that

λmin
M∈Ω

(S) > 0

where

S = P − 2Â
T
PÂ − 2MK̄

T
B̄

T
0 − 2Â

T
PB̂0K̄M − 2MK̄

T
B̂

T
0 PB̂0K̄M − (n + 1)

nX
i=1

(MK̄
T
B̂

T
k PB̂kK̄M)

then system (4) has the ability of fault tolerant against sensor failures M ∈ Ω .

Note that λm(·) denotes the minimum eigenvalue of matrix S.

Proof. Consider the Lyapunov function

V (k) =x
T(k)Px(k) + (n + 1)

nX
i=1

k−1X
j=k−i

[xT(k)MK̄
T
B̂

T
j,kPB̂j,kK̄Mx(k)]

∆V =V (k + 1) − V (k) =

x
T(k + 1)Px(k + 1) − x

T(k)Px(k)+

(n + 1)
nX

i=1

[xT(k)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k) − x

T(k − i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k − i)] =
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x
T(k)[(Â + B̂0K̄M)TP (Â + B̂0K̄M) − P + (n + 1)

nX
i=1

(MK̄
T
B̂

T
i,kPB̂i,kK̄M)]x(k)+

nX
i=1

[xT(k − i)MK̄
T
B̂

T
i,k]P (Â + B̂0K̄M)x(k) + x

T(k)(Â + B̂0K̄M)TP

nX
i=1

[B̂i,kK̄Mx(k − i)]+

nX
i=1

[xT(k−i)MK̄
T
B̂

T
i,k]P

nX
i=1

[B̂i,kK̄Mx(k−i)−(n+1)

nX
i=1

[xT(k−i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k−i)]]

By lemma 1, we have

nX
i=1

[xT(k − i)MK̄
T
B̂

T
i,k]P (Â + B̂0K̄M)x(k) + x

T(k)(Â + B̂0K̄M)TP

nX
i=1

[B̂i,kK̄Mx(k − i)] 6

x
T(k)(Â + B̂0K̄M)TP (Â + B̂0K̄M)x(k) +

nX
i=1

[xT(k − i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k − i)]

and

nX
i=1

[xT(k − i)MK̄
T
B̂

T
i,k]P (Â + B̂0K̄M)x(k) =

nX
i=1

nX
j=1

[xT(k − j)MK̄
T
B̂

T
j,kPB̂i,kK̄Mx(k − i)] 6

n

nX
i=1

[xT(k − i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k − i)]

Thus,

∆V 6x
T(k)[(Â + B̂0K̄M)TP (Â + B̂0K̄M) − P + (n + 1)

nX
i=1

(MK̄
T
B̂

T
i,kPB̂i,kK̄M)]x(k)+

x
T(k)(Â + B̂0K̄M)TP (Â + B̂0K̄M)x(k) +

nX
i=1

[xT(k − i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k − i)]+

n

nX
i=1

[xT(k−i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k−i)]+(n+1)

nX
i=1

[xT(k−i)MK̄
T
B̂

T
i,kPB̂i,kK̄Mx(k − i)]=

x
T(k)[2(Â + B̂0K̄M)TP (Â + B̂0K̄M) − P + (n + 1)

nX
i=1

(MK̄
T
B̂

T
i,kPB̂i,kK̄M)]x(k) 6

− x
T(k)[P − 2Â

T
PÂ − 2MK̄

T
B̂

T
0 PÂ − 2Â

T
PB̂0K̄M − 2MK̄

T
B̂

T
0 PB̂0K̄M ]−

(n + 1)

nX
i=1

[MK̄
T
B̂

T
k PB̂kK̄Mx(k)]x(k) = −x

T(k)Sx(k) 6 −λmin(S)xT(k)x(k)

If λmin
M∈Ω

(S) > 0, then ∆V < 0. From Lyapunov stability theory, system (4) is asymptotically stable.

The system has the ability of fault tolerant against sensor failures. �

If system (3) is under actuator failures, then we introduce switching matrix L, which is between

the system matrix B and feedback gain matrix K, where L = diag{l1, l2, · · · , ln}.

Let

lj =

�
1, no actuator fault

0, jth actuator fault
, j = 1, 2, · · · , n, L 6= 0

Suppose that the system is controllable, and consider the state feedback control law u(k) = Kx(k).

Then the close-loop control system can be written as

x(k + 1) = (Â + B̂0,kLK(I + δ)−1)x(k) +
nX

i=1

(B̂i,kLK(I + δ)−1
x(k − i)) (5)

The corresponding integrity design is to find the state feedback gain matrix K such that the

system can keep stable under any actuator failures L ∈ Ω
′, where Ω

′ denotes the set of all possible

actuator failures switching matrix.
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Theorem 2. Let ‖B̂k‖2 = max
06i6n
i,k∈N

(‖B̂i,k‖2). If there exists positive define matrix P = PT, such

that

λmin
L∈Ω′

(S′) > 0

where

S
′ = P − 2Â

T
PÂ − 2K̄

T
LB̂

T
0 PÂ − 2Â

T
PB̂0LK̄ − 2K̄

T
LB̂

T
0 PB̂0LK̄ − (n + 1)

nX
i=1

(K̄T
LB̂

T
k PB̂kLK̄)

then system (5) has the ability of fault tolerant against actuator failures L ∈ Ω
′.

The proof of the Theorem 2 is similar to Theorem 1.

The design step of a robust fault-tolerant controller with sensor failures or actuator failure is given

as follows. Choose state feedback control matrix as

K̄ = −rB̂
T
0 P (6)

where r is constant.

Step 1. Choose an appropriate P . From (6) we can get state feedback matrix K̄, and substitute

it into Theorem 1 or Theorem 2.

Step 2. If P satisfies these inequality, then stop and have a feasible controller.

Step 3. Otherwise, go back to Step 1.

It is difficult to describe a real system with an accurate mathematical model. So ∆A, ∆B are em-

ployed to describe the uncertainty with appropriate dimension, indicating the parameter uncertainties

of the system.

Consider the uncertain networked control system model

ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t)

Consider the state feedback control law u(k) = Kx(k). Then the close-loop control system can be

written as

x(k + 1) = (Â + ∆Â)x(k) +

qX
i=0

(B̂i,k + ∆B̂i,k)Kx(k − i)

where

∆Â = e
(A+∆A)h − e

Ah = e
Ah(e∆A·h − I)

∆B̂i,k =

Z tk
i−1

tk
i

[e(A+∆A)(h−s)(B+∆B)−e
A(h−s)

B]ds=

Z tk
i−1

tk
i

[eA(h−s)((e∆A(h−s)− I)B+e
∆A(h−s)∆B)]ds

∆Â, ∆B̂i,k are admissible parameter uncertainties of the system that can be described as ∆Â =

DF (k)E, ∆B̂i,k = DiFi(k)Ei (i = 0, 1, · · · , n), where Di and Ei are known constant matrices. Fi(k)

are time-varying uncertainty matrices satisfying F (k)TF (k) 6 I and Fi(k)TFi(k) 6 I (i = 0, 1, · · · , n).

The close-loop networked control system model with sensor failures or actuator failures can be

written respectively as

x(k+1) = (Â+∆Â+(B̂0,k+∆B̂0,k)K(I+δ)−1
M)x(k)+

nX
i=1

((B̂i,k+∆B̂i,k)K(I+δ)−1
Mx(k − i))

(7)

x(k+1) = (Â+∆Â+(B̂0,k + ∆B̂0,k)LK(I+δ)−1)x(k)+

nX
i=1

((B̂i,k+∆B̂i,k)LK(I+δ)−1
x(k − i))

(8)

Theorem 3. Let ‖B̂k‖2 = max
06i6n
i,k∈N

(‖B̂i,k‖2), ε, εi (i = 0, 1, · · · , n) > 0 and P−1 − εDDT > 0,

P−1 − εiDiD
T
i > 0. If there exists positive define matrix P = PT, such that

λmin
M∈Ω

(T ) > 0
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where

T =P − 4Â
T(P−1 − εDD

T)−1
Â − 4ε

−1
E

T
E − 4MK̄

T
B̂

T
0 (P−1 − ε0D0D

T
0 )−1

B̂0K̄M−

4ε
−1
0 MK̄

T
E

T
0 E0K̄M − (n + 1)

nX
i=1

Gi

Gi =MK̄
T
B̂

T
k (P−1 − εiDiD

T
i )−1

B̂kK̄M + ε
−1
i MK̄

T
E

T
i EiK̄M

then system (7) has the ability of fault tolerant against sensor failures.

Proof. Consider Lyapunov function

V (k) = x
T(k)Px(k) + (n + 1)

nX
i=1

k−1X
j=k−i

[xT(k)Gjx(k)]

Let Ā = Â + ∆Â + B̂0,kK̄M + ∆B̂0,kK̄M , B̄i,k = B̂i,k + ∆B̂i,k. From Theorem 1, we have

∆V =V (k + 1) − V (k) = x
T(k)[2Ā

T
PĀ − P + (n + 1)

nX
i=1

Gi]x(k)+

(n + 1)
nX

i=1

[xT(k − i)MK̄
T
B̄

T
i,kPB̄i,kK̄Mx(k − i)] − (n + 1)

nX
i=1

[xT(k − i)Gix(k − i)]

By lemma 2 and P−1 − εiDiD
T
i > 0, we have

[B̂i,k + DiFi(k)Ei]
T
P [B̂i,k + DiFi(k)Ei] 6 B̂

T
i,k(P−1 − εiDiD

T
i )−1

B̂i,k + ε
−1
i E

T
i Ei

Then MK̄TB̂T
i,kPB̄i,KK̄M 6 Gi.

From the above and lemma1 and lemma2, when P−1 − εDDT > 0, P−1 − ε0D0D
T
0 > 0, we have

Ā
T
PĀ =(Â + ∆Â + B̂0,kK̄M + ∆B̂0,kK̄M)TP (Â + ∆Â + B̂0,kK̄M + ∆B̂0,kK̄M) =

(Â + ∆Â)TP (Â + ∆Â) + (B̂0,kK̄M + ∆B̂0,kK̄M)TP (B̂0,kK̄M + ∆B̂0,kK̄M)+

(Â + ∆Â)TP (B̂0,kK̄M + ∆B̂0,kK̄M) + (B̂0,kK̄M + ∆B̂0,kK̄M)TP (Â + ∆Â) 6

2(Â + ∆Â)TP (Â + ∆Â) + 2(B̂0,kK̄M + ∆B̂0,kK̄M)TP (B̂0,kK̄M + ∆B̂0,kK̄M) 6

2Â
T(P−1 − εDD

T)−1
Â + 2ε

−1
E

T
E + 2MK̄

T
B̂

T
0 (P−1 − ε0D0D

T
0 )−1

B̂0K̄M+

2ε
−1
0 MK̄E

T
0 E0K̄M

Thus

∆V 6x
T(k)[2Ā

T
PĀ − P + (n + 1)

nX
i=1

Gi]x(k) 6

x
T(k)[4Â

T(P−1 − εDD
T)−1 + 4ε

−1
E

T
E + 4MK̄

T
B̂

T
0 (P−1 − ε0D0D

T
0 )−1

B̂0K̄M+

4ε
−1
0 MK̄

T
E

T
0 E0K̄M − P + (n + 1)

nX
i=1

Gi]x(k) =

− x
T(k)Px(k) 6 −λmin(T )xT(k)x(k)

If λmin
M∈Ω

(T ) > 0, then ∆V < 0. From the Lyapunov stability theory, system (7) is robustly asymptoti-

cally stable. The system has the ability of fault tolerant against sensor failures. �

Theorem 4. Let ‖B̂k‖2 = max
06i6n
i,k∈N

(‖B̂i,k‖2), ε, εi (i = 0, 1, · · · , n) > 0 and P−1 − εDDT > 0,

P−1 − εiDiD
T
i > 0. If there exists positive define matrix P = PT, such that

λmin
L∈Ω′

(T ′) > 0
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where

T
′ =P − 4Â

T(P−1 − εDD
T)−1

Â − 4ε
−1

E
T
E − 4K̄

T
LB̂

T
0 (P−1 − ε0D0D

T
0 )−1

B̂0LK̄−

4ε
−1
0 K̄

T
LE

T
0 E0LK̄ − (n + 1)

nX
i=1

Gi

Gi =K̄
T
LB̂

T
k (P−1 − εiDiD

T
i )−1

B̂kLK + ε
−1
i K

T
LE

T
i EiLK

then system (8) has the ability of fault tolerant against actuator failures.

The proof of the Theorem 4 is similar to Theorem 3.

4 Simulation analysis

Consider the simulation example in [6]: Â =

�
0.2759 0.1839

0.1379 0.0921

�
, B̂0 =

�
0.0778

0.1425

�
, B̂1 =

�
0.1185

0.0665

�
,

B̂2 =

�
0.0157

0.0079

�
and assume ∆Â =

�
0 0.01 sin(k)

0 0

�
, ∆B̂0 =

�
0

0.02 cos(k)

�
, ∆B̂1 =

�
0.02 cos(k)

0

�
,

∆B̂2 =

�
0

0.02 cos(k)

�
, F (k) = Fi(k) =

�
sin(k) 0

0 cos(k)

�
, (i = 0, 1, · · · , n).

We can get D =

�
0.1 0

0 0.1

�
, E =

�
0 0.1

0 0

�
, D0 =

�
0.2 0

0 0.1

�
, E0 =

�
0

0.2

�
, D1 =

�
0.2 0

0 0.1

�
,

E1 =

�
0.1

0

�
, D2 =

�
0.2 0

0 0.2

�
, E2 =

�
0

0.1

�
, D1 =

�
0.2 0

0 0.1

�
.

Consider K̄ = −rB̂T
0 P , and let r = 5, ε = εi (i = 0, 1, · · · , n) = 1. By Theorem 4, letting

P =

�
1 0

0 1

�
, we have the feedback matrix K̄ = [−0.3890 − 0.7125], and λmin

L∈Ω′

(T ′) > 0.2623 > 0.

The CAN connects the plant to the controller. A deadband is defined on each node, so that it

remembers the last value it sent to the network. The magnitude of the deadband coefficient for the two

sensor nodes and the controller node are δ1 = 0.05, δ2 = 0.01, δu = 0.02, respectively. If a node does

not broadcast a new value, then all other nodes assume that the previous value is still valid and act

accordingly.

The simulation result is shown in Fig. 2. The solid lines denote the state in a normal situation,

and the dash lines denote the state in actuator failures. In view of simulation results, the system can

keep steady when actuator failures happen. Simulation results further validate the proposed scheme.

Fig. 2 Zero input response of state in actuator failures

5 Conclusion and prospect

Networked control system could degrade the system dynamic performance and is a source of

potential instability in complex dynamical processes like advanced aircraft, spacecraft, and autonomous

manufacturing plants. Fault-tolerant controller design for a kind of NCS is investigated in this paper,

which takes into account system response as well as network traffic. The implementing of deadbands

not only results in network traffic reduction but also maintains acceptable system performance. The

integrity design of an NCS with sensor failures and actuator failures is analyzed based on robust fault-

tolerant control theory and information scheduling, and the simulation results demonstrated satisfying

performance.
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The research presented in this paper provides a foundation for future research in NCS fault-tolerant

control. In future work, more complex networked control system, in which network effects on system

performance should be further considered, is to be investigated in terms of modeling algorithm and fault-

tolerant controller design. In addition, an intelligent fault-tolerant controller design that incorporates

both network and control parameters to further improve both network and control performance should

be further studied. This intelligent networked controller can identify/estimate network performance and

operate among multiple nodes of control action, by means of network traffic or control performance.
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