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Abstract The PnP problem is a widely used technique for pose determination in computer vision

community, and finding out geometric conditions of multiple solutions is the ultimate and most

desirable goal of the multi-solution analysis, which is also a key research issue of the problem. In
this paper, we prove that given 3 control points, if the camera′s optical center lies on the so-called

“danger cylinder” and is enough far from the supporting plane of control points, the corresponding
P3P problem must have 3 positive solutions. This result can bring some new insights into a better

understanding of the multi-solution problem. For example, it is shown in the literature that the

solution of the P3P problem is instable if the optical center lies on this danger cylinder, we think
such occurrence of triple-solution is the primary source of this instability.
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1 Introduction

The Perspective-n-Point problem, or the PnP problem in short, is a classical problem in computer

vision, photogrammetry, and even in mathematics. It was first formally introduced by Fishler and

Bolles in 1981[1], and later extensively studied by others, e.g. [1 ∼ 11] to cite a few. The PnP problem

is meaningful only when “n”, i.e., the number of the point correspondences from space control points

to their projected image ones, belongs to {3, 4, 5}, or the P3P problem, the P4P problem, and the P5P

problem. This is because when n < 3, the problem is not well defined, and when n > 5, the problem

can be linearly solved, for example, by the direct linear transformation method[12].

Among the P3P problem, the P4P problem, and the P5P problem, the most fundamental one

is the P3P problem due to its wide applicability as well as its pivotal role-played for the other two

problems. In the literature, the P3P problem has been extensively studied. Su et al.[5] showed that the

necessary and sufficient condition for the P3P problem having an infinitely large number of solutions

is the co-circularity of its three control points with the camera′s optical center. Fishler and Bolles[1]

showed that the P3P problem has at most 4 positive solutions and this upper bound is also attainable

via a concrete example. Haralick et al.[2] reviewed and compared 6 different direct approaches to solve

the P3P problem. Gao et al.[9] gave a complete solution classification of the P3P problem. Their results

are purely algebraic, and seem less instructive in real applications than directly solving a 4th degree

polynomial as originally stated. Hence, it is desirable to give a geometrical interpretation of multiple

solutions of the P3P problem. In [13], a general condition for the P3P problem to have 4 solutions is

obtained. In this paper, we give a sufficient condition for the P3P problem to have 3 solutions.

Although the P3P problem has been extensively studied in the literature, we think the present

study is worth reporting: Firstly, these results can bring some new insights into a better understanding

of the multi-solution problem. For example, it is shown in [14] that the solution of the P3P problem

is instable if the optical center lies on the danger cylinder, we think such occurrence of triple-solution

is the primary source of this instability. Secondly, the results are purely geometric and can be used as

theoretical guides in real applications to avoid harmful multiple solution problem by properly arranging

the control points.

In this paper, a bold capital letter denotes a matrix or a non-homogeneous 3-vector, a bold small

letter denotes homogeneous 3-vector of image points, τ stands for transpose, |•| means absolute value

for real numbers, ‖•‖ means Frobenius norm for vectors or matrices.
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2 Preliminaries

For the clarity and convenience, the two kinds of definitions of the P3P problem, their relations,

and the fundamental constraints will be listed in this section at first. They are necessary elements for

us to proceed to our main conclusions, which will be elaborated in Section 3.

2.1 The distance-based definition

It is defined as follows: given the relative spatial locations of 3 control points and given the angle

to every pair of control points from the perspective center, find the distance of each of the control points

from the perspective center.

As shown in Fig. 1(a), A,B, and C are three control points, O is the optical center, by the law of

Cosines, we have the following familiar system of constraints:8><>: z2 + y2 − 2zy cos α = a2

x2 + z2 − 2xz cos β = b2

x2 + y2 − 2xy cos γ = c2

(1)

where a = |BC|, b = |AC|, and c = |AB|. x = |OA|, y = |OB|, and z = |OC| are the three distances

to determine under the distance-based definition.

Fig. 1 The geometry of the P3P problem and the object system setup

2.2 The transformation-based definition

It is defined as follows: given 3 control points with known coordinates in an object-centered frame

and their corresponding projections onto an image plane and given the intrinsic camera parameters,

find the transformation matrix between the object frame and the camera frame[3].

As shown in Fig. 1(b), A,B, and C are three control points, whose non-homogenous coordinates

are M A, M B , and M C , respectively. To simplify the problem, a special object frame is setup such

that

M A = (e d 0)τ , M B = (0 0 0)τ , M C = (a 0 0)τ

with d = c sin ∠ABC, e = c cos ∠ABC.

Without loss of generality, let the intrinsic camera parameter matrix be the identity matrix, and

the three corresponding image points in homogenous coordinates be mA, mB, mC respectively, which

are all unit vectors, i.e. ‖mA‖ = 1, ‖mB‖ = 1, and ‖mC‖ = 1; then the perspective imaging process

can be expressed as:

simi = (R t)

�
M i

1

�
, i = A, B, C

where sA, sB, sC are three unknown scale factors, R, t are the 3× 3 rotation matrix and the translation

vector, respectively, hence we have the following constraints:8><>: sBmB = t

sCmC = ar1 + t

sAmA = er1 + dr2 + t

(2)

In (2), R = (r1, r2, r1×r2) and t are transformation parameters to determine under the transformation-

based definition.
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2.3 The equivalence of the two definitions

At first, we show that x = sA, y = sB, z = sC in (1) and (2). This is because according to the

projection theory [15, p. 144], if O is the optical center, then

(R t)

�
O

1

�
= 0

and

O = −Rτ
t

Then

x =
p

(A − O)τ (A − O) =
p

(Rτ (sAmA − t) + Rτt)τ (Rτ (sAmA − t) + Rτt) = sA

Similarly, y = sB, z = sC .

In the next, we show that these two definitions are indeed equivalent. This is quite evident because

from (2), we know that if r1, r2, t are known, sA, sB , sC can be uniquely determined. Conversely, if

sA, sB , sC are known, r1, r2, t can also be uniquely determined. Hence in this paper, the two definitions

will be used indistinguishably.

2.4 The main constraints

The constraints (2) can be further simplified as:

sC

sB

mC = a
r1

sB

+ mB (3)

sA

sB

mA = e
r1

sB

+ d
r2

sB

+ mB (4)

Let s′A =
sA

sB

, s′C =
sC

sB

, r
′

1 =
r1

sB

, r
′

2 =
r2

sB

. From (3), we have

r′1 =
s′CmC − mB

a
, r′2 =

as′AmA − es′CmC − gmB

ad
, with g = b cos ∠ACB

By (r′

1)
τ · r′

2 = 0, we have the first main constraint equation

e(s′C)2 − a cos β · s′As′C − (2e − a) cos α · s′C + a cos γ · s′A − g = 0 (5)

By ‖r′

1‖ = ‖r′

2‖, we have the second main constraint equation

(c2−2e2)·(s′C)2+2ae cos β ·s′As′C−a2 ·(s′A)2+2(2e2−c2−ae) cos α·s′C +2ag cos γ ·s′A+(b2−2g2) = 0 (6)

where cos α = m
τ
BmC , cos β = m

τ
AmC , and cos γ = m

τ
BmA.

These two constraint equations are the fundamental basis for the proofs of our main results

presented in Section 3, where sA and sC are two unknowns to determine.

Before ending this section, a further point should be discussed, i.e., how to derive sA, sB , sC from

s′A and s′C . This can be done as follows.

Firstly, due to r1 = sB · 1

a
(
sC

sB

mC − mB) and rτ
1 · r1 = 1, we have

s2
B · 1

a2
(s′CmC − mB)τ · (s′CmC − mB) = 1

then sB = a/
p

(s′CmC − mB)τ · (s′CmC − mB) = a/
p

(s′C)2 − 2s′C cos α + 1, and sC , sA are obtained

by sC = sB · s′C , sA = sB · s′A.

It is clear that different set (s′A, s′C) must result in different set (sA, sB , sC) hence in the next

section, we shall show under what conditions, s′A and s′C in (5) and (6) can have 3 positive solutions.

For notational convenience, s′A, s′C in (5) and (6) will be again denoted as sA and sC in the next section.

3 Main results

The danger cylinder is defined as a circular cylinder circumscribing control points A, B, C with

axis normal to the plane A, B, C[14] (cf. Fig. 2). In [14], based on singularity analysis of the Jacobian
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matrix of constraints, it is concluded that if the optical center lies on the danger cylinder, the solution

of the corresponding P3P is unstable. In this work, we show that this instability could stem primarily

from multiple solutions.

Proposition

As shown in Fig. 2, A, B, C are the three control points, if the optical center O lies on the danger

cylinder except for a few lines on it, and additionally the distance from O to the plane A, B, C is

sufficiently large, then the corresponding P3P problem {O, (A, B,C)} must have 3 positive solutions.

Fig. 2 (a)When the optical center O lies on the danger cylinder, and the corresponding P3P problem must

have 3 positive solutions. (b) An example of 3 positive solutions: {O, ABC}, {O, A′B′C′}, {O, A′′B′′C′′}

Before giving a formal proof of the above result, here is an outline. The proof is composed of the

following two main steps: Firstly the two quadratic constraint equations of two variables (sA, sC) in

(5) and (6) are converted into a 4th degree univariate polynomial, then this polynomial is factorized

into a univariate quadratic equation and two identical linear ones. Secondly, the univariate quadratic

equation is shown to have two positive roots.

Proof.

Step 1. When the optical center lies on the danger cylinder, the constraints in (5) and (6) can

be factorized into a univariate quadratic equation and two identical linear ones.

As shown in Fig. 2(a), P is the projection of the optical center O on the plane ABC, to be more

exact, on the circumscribed circle of triangle ABC, line AM passes through the center of the circle,

AN ⊥ BC, and M, N lie on the circle.

Assume P = (x, y, 0)τ ; then x2 − ax + y2 − bc cos ∠A

d
y = 0, that is, P lies on the circumscribed

circle.

Let |OP | = h; then O = (x, y, h)τ . In addition, as shown in Section 2.2, MA = (e d 0)τ ,

M B = (0 0 0)τ , M C = (a 0 0)τ , then

|OA| =
p

x2 + y2 − 2ex − 2dy + c2 + h2, |OB| =
p

x2 + y2 + h2, |OC| =
p

x2 + y2 − 2ax + a2 + h2

and

cos α =
|OB|2 + |OC|2 − a2

2|OB||OC| , cos β =
|OA|2 + |OC|2 − b2

2|OA||OC| , cos γ =
|OA|2 + |OB|2 − c2

2|OA||OB| (7)

1) When cos βsC − cos γ = 0

By some simple calculations, we can prove that when cos βsC − cos γ = 0, P must coincide with

point A,B, or N . In addition, we can prove that:

1.1) If P coincides with A, (5) and (6) must have three positive solutions;

1.2) If P coincides with M or N but b 6= c, (5) and (6) still have three positive solutions;

1.3) If P coincides with M or N but b = c, M and N will coincide each other, thus (5) and (6)

have only two positive solutions.

Since the above three cases are isolated ones and can be proved by simply substituting the related

conditions into (5) and (6), the detailed steps will be omitted.
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2) When cos βsC − cos γ 6= 0

By (5), we have

sA = (es2
C − (2e − a) cos αsC − g)/a(cos βsC − cos γ)

Substituting sA into (6) gives

(cos2 β − cos2 ∠B)c2 · s4
C + 2c

�
1

a
(c2 − b2) cos ∠B cos α − b cos ∠A cos γ cos β − c cos2 β cos α

�
· s3

C+�
2(b2+c2) cos α cos β cos γ+(b2−a2) cos2 γ−(

b2−c2

a
)2 cos2 α+(c2−a2) cos2 β+2bc cos ∠B cos ∠C

�
·s2

C+

2b

�
1

a
(b2 − c2) cos ∠C cos α − c cos ∠A cos γ cos β − b cos2 γ cos α

�
· sC + (cos2 γ − cos2 ∠C)b2 = 0 (8)

Substituting (7) into (8), i.e., when the optical center is limited to the danger cylinder, (8) can

be factorized into �
sC − |OC|

|OC|

�
· (s2 · s2

C + s1 · sC + s0) = 0 (9)

where

s2 = [C1 · h4 + (C2x + C3y + C4) · h2 + (C5xy + C6x + C7y
2 + C8y)]|OC|

s1 = [C9 · h4 + (C10x + C11y + C12) · h2 + (C13xy + C14y
2 + C15y)]|OB|

s0 = [C16 · h4 + (C17x + C18y + C19) · h2 + (C20xy + C21x + C22y
2 + C23y)]|OC|

C1 = 16al3, C9 = −32al3, C16 = 16al3, and l =
1

2
ac sin ∠B (other coefficients Ci are irrelevant to our

proof and will not be listed here).

From (9), we have

sC =
|OC|
|OB| (10)

or

s2 · s2
C + s1 · sC + s0 = 0 (11)

Step 2. Three different positive solutions from (10) and (11).

Step 2.1. Except some isolated cases, SC in (10) is not a root of (11)

When sC = |OC|/|OB|, we have sA = |OA|/|OB|. This is one group of positive solutions of the

P3P problem. Additionally, it is necessary to show under what conditions sC = |OC|/|OB| is not a

root of (11). Substituting sC = |OC|/|OB| into the left side of (11), we have

|OC|/|OB|2(f(a, b, c, x, y)h2 + g(a, b, c, x, y)) (12)

where both f(a, b, c, x, y) and g(a, b, c, x, y) are functions of {a, b, c, x, y}. Hence if f(a, b, c, x, y) and

g(a, b, c, x, y) are not equal to 0 simultaneously, then (12) cannot equal 0, that is, sC = |OC|/|OB|
cannot also be a root of (11). The following is an enumeration of all the possible cases when f(a, b, c, x, y)

and g(a, b, c, x, y) are equal to 0 simultaneously.

Case A. If b = c, then when P = N , or P =

�
a

2
+

√
3b

4 sin ∠B
,

b + 2b cos ∠A

4 sin ∠B
, 0

�
or P =�

a

2
−

√
3b

4 sin ∠B
,

b + 2b cos ∠A

4 sin ∠B
, 0

�
, both f(a, b, c, x, y) and g(a, b, c, x, y) are equal to 0. In these cases,

there are only two positive roots of (5) and (6).

Case B. When P = N but b 6= c, both f(a, b, c, x, y) and g(a, b, c, x, y) are equal to 0. However,

there are still three different positive roots of (5) and (6).

Case C. When P = P0

�
a

2
+

b cos θ

2 sin ∠B
,
bc cos ∠A

2d
+

b sin θ

2 sin ∠B
, 0

�τ

but b 6= c, both f(a, b, c, x, y)

and g(a, b, c, x, y) are equal to 0, there are only two positive roots of (5) and (6), here sin θ and cos θ

satisfy (13) and (14).

8a2bc sin3 θ − 6a2bc sin θ + a2c2 + a2b2 − b4 + 2b2c2 − c4 = 0 (13)



No. 4 ZHANG Cai-Xia et al.: Why is the Danger Cylinder Dangerous in the P3P Problem? 509

cos θ =
4a2bc sin2 θ + (a2c2 + a62b2 − b4 + 2b2c2 − c4) sin θ − 2a2bc

2ac(b2 − c2) sin ∠B
(14)

In summary, if P is not one of the above points in Cases A, B and Case C, sC = |OC|/|OB|
cannot be a root of (11).

Step 2.2. (11) has two different positive roots

At first, if the optical center is enough far from the plane ABC, then the signs of s2, s1 and s0

will be the same to those of coefficients C1, C9, and C16. Hence s2 > 0, s1 < 0, s0 > 0.

In addition, the discriminant of (11) is

∆ =32C24C25[(C26x + C27y + C28) · h6 + (C29xy + C39x + C31y
2 + C32y + C33) · h4+

(C34x + C35xy3 + C36xy2 + C37xy + C38y
4 + C39y

3 + C40y
2 + C41y) · h2+

(C42xy4 + C43xy3 + C44xy2 + C45y
5 + C46y

4 + C47y
3)]

where C24 = l2, C25 = 1/d2, C26 = −128(b − c)(b + c)al6, C28 = 32a4b2c2l4 cos2 ∠C, C27 = 32(a2b2 +

a2c2 − b4 + 2bc2 − c4)al5 (other coefficients Ci are irrelevant to our proof and will not be listed here).

Denote the coefficient of h6 in ∆ by δ. Then

δ = 1024al6/d2(4(c2 − b2)l2 · x + (a2b2 + a2c2 − b4 + 2b2c2 − b4 + 2b2c2 − c4)l · y + a3b2c2 cos2 ∠C)

when h is large, in order for ∆ > 0, it suffices δ > 0. In the following, we will prove indeed.

Because the projection of the optical center on the plane ABC P = (x, y, 0)τ satisfies the circle

equation, x can be expressed as a function of variable y, consequently, δ can also be expressed as a

function of y, say δ(y). It is evident that δ(y) is continuous and differentiable, so δ(y) can reach its

maximum and minimum within the following closed interval:�
(a + b − c)(b − a − c)

4b
,
(a + b + c)(b + c − a)

4d

�
at points at which its first derivative is 0 or at the two endpoints of the interval.

Denote the first derivative of δ with respect to y by δ′y, the second derivative by δ′′y . Since (x, y)

lies on the circle:

x2 − ax + y2 − bc cos ∠A

d
y = 0

when y ∈
�

(a + b − c)(b − a − c)

4d
,
(a + b + c)(b + c − a)

4d

�
, by some simple calculations, we can prove

that when x = b cos ∠C, y = − b cos ∠B cos ∠C

sin ∠B
, δ′y = 0 and δ′′y > 0, so δ reaches its minimum of 0.

However in this case, P is the point M . As we said before, P is assumed different from points M, N ,

we can conclude that when y ∈
�

(a + b − c)(b − a − c)

4d
,
(a + b + c)(b + c − a)

4d

�
, δ > 0 holds.

In addition, when y =
(a + b − c)(b − a − c)

4d
or (a+b+c)(b+c−a)

4d
, there is x =

a

2
, and we have

δ = δ1 =
256a2bcl6

d2
(b − c)2(a + b + c)(b + c − a)

or

δ = δ2 =
256a2bcl6

d2
(b + c)2(a + b − c)(a + c − b)

It is clear that δ2 > 0 always holds. However, for δ, if b 6= c, δ1 > 0; if b = c, δ1 = 0. But as we

said before, when b = c, P coincides with point M , and this case is excluded in our assumption. Hence

at these two endpoints, δ > 0 holds also.

Combining these two cases, we know δ > 0 holds when y is within the closed interval, i.e.,

y ∈
�
(a + b − c)(b − a − c)

4d
,
(a + b + c)(b + c − a)

4d

�
.
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In the following, we investigate under what condition sA is positive when sC is a positive root of

(11). From, sA = (e · s2
C − (2e − a) cos α · sC − g)/a(cosβ · sC − cos γ), sA > 0 is equivalent to the

following inequality: pA = (e · s2
C − (2e − a) cos α · sC − g) · (cos β · sC − cos γ) > 0.

From (11), there is

sC = −(s2 · s2
C + s0)/s1 (15)

Substituting (15) into pA, we obtain

pA = ((C48s
4
C +C49s

2
C +C50) ·h12 +λ10 ·h10 +λ8 ·h8 +λ6 ·h6 +λ4 ·h4 +λ2 ·h2 +λ0)/4s2

1 · |OA| · |OB|3

where C48 = 1024a3l6, C49 = −2048a3l6, C50 = 1024a3l6 (the other parameters λi are irrelevant to our

proof and will not be listed here)

The coefficient of the highest degree in h of the polynomial pA is

λ12 = C48s
4
C + C49s

2
C + C50 = 1024a3l6(sC − 1)2 · (sC + 1)2 (16)

It is clear that λ12 > 0. In addition, since when sC > 0, λ12 = 0 if and only if sC = 1. The

following is to prove sC = 1 cannot be a root of (11).

Case 1 If |OB| 6= |OC|, then by substituting sC = 1 into the left side of (11), it can be shown that

sC = 1 is not a root of (11) when h is large enough.

Case 2 If |OB| = |OC|, i.e., if P = P1 =

�
a

2
,
b(cos ∠BAC + 1)

2 sin ∠ABC
, 0

�
or

P = P2 =

�
a

2
,
b(cos ∠BAC − 1)

2 sin ∠ABC
, 0

�
then by substituting into the left side of (11), we have

L1 =
a2b(b + c)2(a + b + c)(a − b − c)(a + b − c)2(a − b + c)2

8 sin ∠ABC
|OB| when P = P1

L2 =
a2b(b − c)2(a + b − c)(a − b + c)(a + b + c)2(a − b − c)2

8 sin ∠ABC
|OB| when P = P2

It is evident that L1 6= 0 and when b 6= c, L2 6= 0. This indicates that in these cases, sC = 1 is

not a root of (11). However when b = c, L2 = 0. But in this last case, P2 coincides with point M , and

it is excluded in our assumption.

Combining Case 1 and Case 2, sC = 1 is not a root of (11), i.e., sC 6= 1 holds, then λ12 > 0 holds.

Thus, if the optical center is enough far from the plane of control points, we have pA > 0, hence sA > 0.

Therefore, we can conclude that when the optical center lies on the danger cylinder except for

a few lines on it, and is placed enough far from the plane of control points, the corresponding P3P

problem must have three positive solutions. �

At this stage, we can give an explicit specifications of those invalided “a few lines” in the propo-

sition. In fact, these lines are those defined in Case A and Case C in Step 2.1.

4 Simulations

All simulations are performed by Maple 7. The simulation steps are as follows: Firstly, choose

three control points A, B, C at random to form a triangle, then construct its danger cylinder like that

in Fig. 2, and arbitrarily select a point as the optical center on the danger cylinder, then compute

three sides a, b, c and three angles α, β, γ, finally, substitute a, b, c and α, β, γ into Equations in (1),

and solve them. For convenience, we setup a coordinate frame such that the X-axis coincides with

AC, Y positive axis passes through B, then M A = (−c cos ∠BAC, 0, 0)τ , M B = (0, c sin ∠BAC, 0)τ ,

M C = (a cos ∠ACB, 0, 0)τ .

We will report an example only for the obtuse triangle due to the space limit.

For an obtuse triangle, we set a = 78, b = 36, c = 47. The optical center is at 
3875

72
+

p
−277426451116549 + 1209135756780

√
4800215

960043
, 25, 456

!τ

so cos α = 0.9860329534, cos β =

0.9969727446, cos γ = 0.9949725637. The three groups of positive solutions are:8><>: |OA| = 461.8272676

|OB| = 467.8626706

|OC| = 457.8559471

,

8><>: |OA| = 462.9167228

|OB| = 468.3185048

|OC| = 462.2441451

,

8><>: |OA| = 445.1718116

|OB| = 428.0557374

|OC| = 453.7209075
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Remarks

1) In this paper, we show that if the optical center is enough far from the supporting plane of

control points, the corresponding P3P problem must have 3 positive solutions. However, an explicit

specification of “farness” is unavailable at this stage, it depends on the specific relation with respect to

the triangle ABC. From the simulations, it seems that the distance does not need to be too large.

2) It is shown that the highest degree of h in the discriminant of (11) ∆ is 6, while the highest

degrees of h in both s1 and s2 of (11) are 4, so when the optical center is enough far from the plane

ABC, i.e. h is very large, then (11) will have two very close solutions (c.f. the example for the obtuse

triangle in the simulations). This accords with the instability explanation in [13].

5 Conclusions

A general sufficient condition for the P3P problem to have 3 positive solutions is obtained. We

think this occurrence of multiple solutions when the optical center lies on the danger cylinder is the

primary source of the observed instability in [14]. Our results are purely geometric and instructive

enough for practitioners to properly arrange control points in real applications. ��
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