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Abstract The fixed boundary control of transpiration cooling system is discussed. The non-linear
optimal control problem 1s replaced by one in which a linear form 1s minimized over a set of positive
measures satis{ying linear constraints, The method to calculate the mimimized weight of coolant
loaded 1n rranspiration control system is given. The numerical simulation shows that the approach
1s valid in developing numerical technique.
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1 Introduction and question

Transpiration cooling control is a kind of important means of thermal protection. Ap-
plying the principle of transpiration to temperature control field has prospects for both mil-
itary and commercial application such as in the thermal protection of the cabin of superson-
ic aircraft, in dealing with the ablation problem of heat protection shield of missile nose,
and in the design of thermal protection for the throat of rocket jets or the gas rudder.

The research of transpiration cooling control problem in China has made remarkable
progress, the main work include system model, numerical method and simulation, mathe-
matical theory, control theory, and experiment research. For details one can see the sur-
vey [ 1]. On the study of control method, Yang proposed a feedback control scheme for
water transpiration cooling system'?.

In this paper, the optimal control problem of fixed boundary transpiration cooling sys-
tem as following is discussed. In this case, no ablation occurs, the shield temperature T<C

T,, where T, is the material melting temperature. We choose the coordinate system as in
Fig. 1.
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Fig.1 Diagram of the heating shield
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where T(y,t) is the temperature distribution of porous material with thickness /. ¢,p and
k represent the specific heat, the density and thermal conductivity, respectively. The tran-
spiration mass flux M; (z) acts as control parameter. h is terminal time. cp represents the
coolant specific heat. (M, (¢)) is the heat blockage function, which is a nonlinear contin-
uous function of control variable M; (¢). q(¢) is the surface thermal flux of aerodynamic
heating which we assume is continuous. In practice, M; (¢) must be non-negative, bound-

ed and piecewise continuous function', as

M, () € Uy = {M_ () | 0 <M, (t) < M, piecewise continuous}.
Since the coolant carried by rocket affects the delivery cost, The carried coolant should be
minimum under cooling prerequisite, so we choose the following criterion functional,

T = | M, ) de (5)

J O
Then the problem to calculate the minimized weight of coolant loaded of transpiration cool-

ing system is the same as the nonlinear optimal control problem that minimizes functional

(5) under the constraint condition equations (1) ~(4) and 0O<<M, (£)<<M, where M is a
positive constant, and T(y,t)<T,<T,.
Make non-dimensional transformations to simplity equations:

T—T, ML(t)CPL _ k =y
H—T_T () b !T—”Pclztie—" ]
The original system is translated into:
Ju u Ju
3% — v(T) a—ei(‘?, ) € (0,1) X (0,H) (6)
U |r=ﬂ — (7)
ou .
a_E o = v(Du (&)
Ju W (v())
Ofle=1  k(T, — T,;)q(r) 9)

the criterion functional is translated into-
rH

J(v) = 'U(z')dr (10)
and satisfies the constraint condition O<'v(’r)<A and 0<lu(&,7)<1, where E&[0,1 | and
t€& | 0,H ], H is non-dimensional time and A is constant, 1. e. , Azm/f:m.

In this problem, the control parameter appears both in equation and boundary, and
the criterion functional is not a quadratics and not convex. | 1] analyses the difficulty to
minimize (10), [ 4] gives the result concerning existence, uniqueness and approximation of
minimum-norm control problem with flow velocity as its control parameter. In this paper,
the main approach is based on measure theory, consisting of the replacement of classical
variation problems by problems in measure spaces using the tools of linear analysis. The
advantages of new formulation are that the new problem is linear and there is always a
minimizer for our measure problem. The method has resolved many linear and non-linear
optimal control problems”®~"1, [8] improved the method on the basis of main principle,
the method 1s extended to be applicable to more general problems.

[f v(7) is piecewise continuous, there exists unique € C*(0,1) X C' (0, H) for linear
equations (6)~(9)'*1, Then the week solution of equation (11) exists and equals to classi-
cal solution. For every ¢& C*(0,1) XC"'(0,H)

rH

H 1 ) 1
[ [ u(5E+ 00 SE+SF)dedr — | @, HD@(6, HDde+ | 900, 0)uC0, e —
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We call the solution pair (u, v) satisfying equation (11) an admissible control pair.

H
L [u(1,0) (@e(1,7) + v(De(1,1) () p(1,7)]dr = 0 (11)

2 Metamorphosis

The minimization of the functional (10) may not be possible, since the criterion func-
tional is not strictly convex. But, according to Ekeland variation principle'!®’, the nearly-
optimal control exists, that is, for every A>0, there exists v, €V such that J(v;,)<J (v,)
—eAd (v, ,v,)» where €>0,v, €V and J(vy)<inf J (v) +e€. In the following, we translate

ve V
the original problem to {ind nearly-optimal control.

For every fixed admissible pair (u,v), define the tollowing linear bounded positive
functional in the real-value continuous functions space C(A)

[ u(é, ), v(T) |, F-—r-J‘Q F(u(é,v),v(r), &, t)d&dr (12)

where A=(0,1) X(0,A) XQy; Qu=00,1) X (0, H).
By Riesz. A-Markov. S-Kakutani theorem''’, an admissible pair (u, v) defines the u-
nique Randon measure u;

JQ F(u(E,r),v(r),E,r)dEdr:J Fdu =t u(F) (13)

Notice that the formula | ¢:(0,7)u(0,7)dr can be translated into IEAEJU s (EsTD)u(E, )
AF—0

L (§)d&dT, where XEU(E) is continuous function equal to one on [ 0,A&], and rapidly de-
creasing to zero on (A&, 1). Similarly,

Iy (v(T)) .
| [u(1,0) (e (1,7) + v(T)(l,1)) k(Ta_#Tf)q(r)go(l,t‘)]df-
m L[ neey
lﬂ AEJD O[u(faf)(@e(&f)+v(‘r)(p(&f)) k(Ta—’I})q(r)@(e’r)]xﬂ(&dsdr ,

X« () 1s continuous function equal to one on (1—A&,1) , and rapidly decreasing to zero on
| 0,1—A¢]. In the same way.,
J (&, H) (&, H)dé = lim A—J J (&, 0 p(8, 0y (D dedr |
AT—={)
where ¥ (7) is continuous function equal to one on (H—Art, H) and rapidly decreasing to
zero on |0y, H— At ]| . Then equation (13) can be translated into

u(Fo) — limu(Ge) — hm,u(P(p) + limp (D) = (14)

AT—=0) AE—=0 Z
(tb('U)’T )qgo)xa/AEa and

where Fo=u(¢. +veo: + @), Go,=upy /At; P “(H@s‘FH‘U‘P b(]

D, =gy, /A&
Due to [fv(t)dr= 8 |lv(r)dédr, the criterion functional (10) can be translated into-.
I(p) = p(v) (15)
Then the original problem has been modified into one ot finding an optional measure
over one measure space.
We denote by Q the set of measure ¢ satisfying (14)
Q= {u: u & M"(A) and satisfying (14)},
where M™ (A) 1s positive measure on A. Obviously, the measure has some extra properties
which can be deduced from the definition of measure g: If 7: A—>R, depends only on (§,7),
then x(7) is the Lebesgue integral of 5 over Qy
p(n) =1 7(§,r)dédr = a, (16)

n/f
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3 Approximation

Now the original problem has been modified into one of finding an optional measure o-
ver the measure space Q, that is, to find a measure ¢* satisfying (14) and (16) such that
I(x) =p(v) 1s a minimum. In the following, we will discuss the existence of the minimum
and how to realize the finite-dimensional approximation.

We put week” topology on the measure space M (A). We note that this is a linear
space which will become a local convex topological vector space when given the week™ to-
pology. Then the space Q is compact and p—=I1(x) is continuous. We denote the set S of
measure u defined in M* (A) and satisfying (14) and (16), and it is compact.

Proposition 1. There exists an optimal #* € S that minimizes the functional I(u).

It is easy to conclude the result by Theorem2.1 in [6]. In the same way as the proof
of Theorem 7.1 in[5], we have

Proposition 2. The set S; S of measures ¢, which is piecewise-constant function on
A and satisfies equation (11) and constraint condition (16), is weak” -dense in S.

The original problem has been transformed into an infinite dimensional minimization
problem over set S. But we can only compute in finite dimensional spaces in practice. In
the following, we will discuss now how to realize the finite-dimensional approximation. At
first, we consider the minimization of I(x) not over the set Q, but over a subset of Q de-
fined by requiring that only a finite number of constraints in (14) and (16) be satisfied.
This can be achieved by choosing countable sets of functions {#;} that are in C? (0,/) X
C(0,H), thatis , for $€¢€C*(0,1) XC(0,H) and €0, there exists integer N>0 and

scalars 0,,1=1,2, ,N, such that

max

Easﬁﬁ 20'95155‘ <t-:

Pr0p051t10n 3. Let M, and M be positive 1ntegers Consider the problem of minimi-
zing I(u) over the set S(M,, M,)CM* (A),and

p(Fo,) — limu(Ge;) — hmp.(Pgo ) + hm,u(Dgo ) =0, 1=1,2", M, (17a)

Ar—=0

‘u(y)za 1—1,2, , M, (17b)
Then as M,—~>occ(:=1,2), Swl!n{d )[I(;z):l-*lnf[f(#):l

Due to proposition 3, we have limited the number of constraints in the original prob-
lem. But the underlying space S(M,, M ,) is still infinite-dimensional. In what follows,
we derive a finite programming by use of piecewise constant functions. Let the measure
pair p, be the measure corresponding to piecewise constant control »,. Since S; is density
in S, then there exists measure ¢, € S, by piecewise constant control function, such that
II(pﬂ)—irSlfI (1) | <<e. The final approximation must be finite-dimensional and finite-con-

straint conditions. We shall prove below that if the numbers M;—oc, (i=1,2) and the set
of two piecewise constant function (u, v) is sufficiently good, then J(u,, v) =g, (v)—

infl (u).
5

Theorem 1. Let (u,,v) be the pair constructed as explained above. Then, under the
appropriate conditions on the approximation, we have

1) (u,, v) satisfies the weak-solution equation (11) for every $& C¢(0,1) X C' (0, H),

2) As M;—>co(i=1,2), J(u,, v)=p, (‘U)_""il'slﬂ (u).

Proof. For every €0, let #* be the minimizer for the functional I(x) over the S. Be-
cause of the density of S,in S, we can find a measure g, in S; which corresponds to piece-

wise constant trajectory-control function (u, v) such that |I(x,) —I(u")|<e/8; and we
have

| 1, (F@) — limp, (Ge) — limp, (Pp) + limy, (Dg) | < /8 (18)

AT—>0
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1) First, we shall prove that «, is the week solution of equation (11). Due to its con-
struction, u, satisfies equation (11) for every ¢, € C°(0,1) XC'(0,H) ,i=1,2,-+M,. No-
tice that the set {@,} serves as a basis in space C*(0,1) X C'(0,H) in the sense: for every

N
e C°(0,1) XC'(0,H), there exists an integer N and ¢, € R such that ¢= > 6,0,. Thus, if
1=1

we choose M, >N, u, satisfies the week solution equation (11).
2) We will prove the second part of the theorem, that is, for every €0, as M,—>co,

i=1,2, |u, () —infl (40| <e.
|, (o) =it Qo F <[ g, (0) — o [+ p — p7 (<[ g, () — p, (o) [4-€/8 (19)

We shall prove l,u.u (v) —p,(v) | <e/2 below. By (18), we have
| (., — ) Fy ——hm((,uu — )Gy ) —lim((u, —p) Po ) +1im (g, —p,) Dy )| <le/4

Ar—=0 AED AE—~O
(20)
o 9, |
Decompose qofz?-"ﬁ—x. , where 9. satisfies ?, |eo =9, | e, :ﬂé_&: e =¢ | _,=0. The func-
: =1
tion x,(&,7) is chosen so that the Lebesgue measure of the support of y (§,7) in Qy is not

dx, 9y, 9y,

higher than a positive number €, , and 57 oE ' oE are not larger than a positive number

p. Notice that F, =F; +F, ,G, , P, ,D, have the same properties. By (20), if we choose

o and €, properly, the following tormula holds.
] (p, —u)F, |<e/4.

Choose ¢, such that ¢= Zﬁgﬂ Z 1B 1<CA, K<<M,. Let A<C1. Then we have

| (.uu —p ) F, | <A /4 < e/4.
Further, choose 3, i=1,2,+-,K. such that lu(prl<&‘/l6, viug:—1|<e/16, u 1 Dge I <
e/16. We have
| (e, —p ) v << (e, — o) (upe Huvge+uee ) |+ | (pa, — ) (. +v(up: — 1) +upe) | <le/2.
Then by (19) we have I,uuﬂ (v) —"ir;.ﬂ(,u) | <e. End of the proof.

4 Numerical results
Choose aluminum material as an example. The test data 1s as below: [=1. 5cm, T, =
933.3(K), T.=288(K), g(t)=425(cal/cm® « s), k=0.57(cal/cm * K ¢ s), cp. =1, 24
EML(E)CPL
k
blockage function in [12], we have ¥ (v(r)) =1—]0, 5848v(7r) —0. 084v(7r)* |; then the
boundary condition: %% , =1.5(1—0.5848v(7r) +0. 084v(r)*). Set control variables 0=
=1
v<_l, and 0<Cu<l, t€[0,1.4]. The algonthm is given as below,

1> To decompose A with 'UE[:O 1 = U[‘UI LsU) s u€E[0,1]= U[u} s )y EE€10,1 ]

i=1

— U[Ek L8, €[ 0,1. 4]-‘— [ri 1 +7;). The space A is divided into 875 equal sub-do-

maln% Ar=[v_1sv; ] X Lu;—1»u; ] X1 & _1,& 1 X[ 7_-,,7,] with the corresponding Randon
measure B,. We take a constant value A,= (v, ,u,,&,,7,) iIn A,» where v, €[ v, v, |, u, €
wu, o su; |y 6, €186 6], .€LTo,.T, ), and Af=AT1=0. 2. We put the sub-domains in
the order:

A= MN175G-D~350-D+70~1) +k—1 1=1,2,*,3, j=l,2,'",5, [=1,2,,7, k=1,2,+-,5.

2) The original problem has been translated into one ot finding {5, 3 s-**+» 5574} SO as
574

to minimize 2 f3,v, with the following constraint conditions:

n=>0

(cal/g « K). According to v(¢) = , and using the experience formula of heating
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874 874 B74 874
SVBF, (A) — BG, A — DIBP, (A) + SIBD, (A,) = 0,i = 1,2,++,10.
n=1_{ n="0 n=0 n=>_0

874

218:17?1'(’1::) = dy 1 = 1424++,305.
n=10

This is a linear optimization problem with 875 variables and 45 constraint conditions,
where fn=>0. The test functions ¢, € C*(0,1) X' (0,1.4>, i=1,2--10, where ¢,=1’sin
(gr&) 4+ (1/8+1)°. Setting p=0,g=1, p=1,¢g=0.5, p=1,¢=1, p=2,9=0.5, p=2,
qg=1, p=2,9=1.5, p=2,9=2, p=3,9q=0.5, we get ¢;, 1=1,2,++,8. Letting ¢, =
r?sin(gné) +(1/8+1)° and p=1.5,9g=3, p=2,9=0. 525, we have ¢, and ¢,,. The 35
functions 7,(i=1,2,++,35) are chosen as the characteristic function on [ &_,,& 1 X[ 71,
r; ). Those functions only depend on (§,7). Resolving the problem, we get the solution of
linear programming (3, as Fig. 2, and J,.;,=0. 6834,

3) How to choose control function. If some one 3, is not zero, then 8, corresponds to
the specified time and control v. For example, the first element 5, =0. 04 corresponds to
time [ 0,0. 2] and control v&[0,0. 2], its average is 0. 1 on the region. Then we get a con-
trol component (0. 10, 04)/0, 2=0, 02 on the first time region. Also, the element (3, =
0. 02 still corresponds to the time region [0,0. 2], but to control v €{0.2,0.4]. Then we
get another control component (0. 3X0, 02)/0. 2=0. 03 on the first time region. Adding
up all this kind of components, we can get the control on the first time region [0,0. 2], In
the same way, by nonzero 8,, we can get the control on other time regions. We get the
control on every time region as below: v; =0.1, v, =0, 2945, »; =0, 3151, v, = 0. 578,
us =0. 74, vs=0.74, v;=0.7036, With the control input, we get the temperature distri-
bution on heating surface §&=1 which is shown in Fig. 3.

0. 04
1. 0 —
0. 02 =
= 0.5
O
— 0. 02 0
0 200 400 600 800 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
& T
Fig. 2 The solution of linear programming Fig. 3 The temperature distribution of

heating surface

5 Conclusion

In this paper, the optimal control of transpiration cooling system has been discussed.
The optimal control problem is replaced by one in which a linear form is minimized over a
set of positive measures satisfying linear constraints, The method to calculate the mini-
mized weight of coolant loaded in transpiration control system is given. The numerical

simulation shows that the approach is valid in developing numerical technique. Moreover,

L . . ou .
the distributed parameter system with bilinear term v 32 1S treated by measure method for

the first time. We mention, finally, that the approach can be applied to other nonlinear
system.
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