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Optimal Policies for a Continuous Time MCP
with Compact Action Set!’
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Abstract In this paper, we study optimal policies for a class of continuous-time Markov control
processes (CTMCPs) with infinite horizon average-cost criteria. Using the basic properties of in-
finitesimal generators and performance potentials, we give directly the optimality equation and es-
tablish the existence of solutions to this equation for the average-cost model on a compact action
set., A fast value iteration algorithm, which leads to an e-optimal stationary policy, is proposed
and the convergence of this algorithm is studied. Finally, we provide one numerical example to
show applications of the proposed method.
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1 Introduction

Markov control processes (MCPs) are a class of Markov chains driven by the control
policy, and evolve according to the rule of state transition and action selection, which can
be classified in two groups, 1. e. , discrete-time MCP (DTMCP) and continuous-time MCP
(CTMCP). In the literature{ 1 ~3], under some strong assumptions, the authors dis-
cussed the average-cost optimality equation for DTMCPs and the existence of the solu-
tions, and presented some convergent iteration algorithms. Recently, Cao introduced the
theory of Markov performance potentials to the performance analysis of MCPs**, which
can relax the restrictions. The results have been extended to the study of queuing net-
works'®~%, In this paper, based on work of [4] and [5], we deal with the optimization
problems of a class of CTMCPs with finite state space and compact action set under infinite
horizon average-cost criterta. With some weak assumptions, we deduce an optimality equa-
tion and an existence theorem of the solutions using the basic properties of infinitesimal
generators and performance potentials for CTMCPs, In addition, we propose a value itera-
tion algorithm that can lead to an e-optimal policy. All the results provide a toundation for
further study of performance optimization of many real systems such as queuing networks.

2 CTMCP

Consider a continuous-time Markov process { X(¢),t=0} with finite state space @=
{1,2,+*yM} and compact action set D=D(1) X D(2) X s+ X D(M), where D(i) is the fea-
sible action set at state i, A stationary policy is denoted as v=(v(1),+,v(M)), and v(7)
=d, e D), 1=1,2,:--. M. Let 2, be the set of all such possible stationary policies. As-
sume that under any policy v&€QR,, { X(2),t=0} 1s irreducible and positively recurrent, and
P*(¢)=[p; (t,v(i)) ] is the transition matrix . Furthermore, a general form of the infini-
tesimal generator is A”=[q; (v(:))]. Let {X,,n=0,1,2,++} be one of the embedded
Markov chain, and P"=[p; (v(i)) ] be its transition matrix such that

. AG o[ ps (v(D) —1], 1=
a; (v(1)) =

AG o)) py (0()), P £ ] (D
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where A(7,v{(71)) >0, denoting the state transition rate of the process at state 7 under policy
v. Equation (1) implies A”=diag(A(1,v(1)), =, A(M,v(M))) « (P*~—1T). Let the sta-
tionary distribution of the process under v be denoted by #* = («x(1,v(1)), -, (M, v
(M))), we have
= 1,A% = 0,7"A" = ( (2)

Here, e=(1,1+++,1)" is a M-dimensional column vector with all components equal to 1. Suppose
f1s a real performance function depending on policy v, and denote = (f(1,v(1)), -,
f(M,v(M)))". We make the following assumptions.

Assumption 1, For any 1,7 € ®, p, (¢t,v()) is a continuous function on D{i).

Assumption 2. For any i1& @, f(i,v(i)) 1s a continuous function on D(7).

Assumption 3. There exists a constant A satisfying sup {(A(i,v(i))} =A< o0,
1€ P,vE 0

We denote X=(X(),®,D,P*(t), f7) to be a CI'MCP constrained on the stationary

policy set (2,. The infinite horizon discounted-cost expectation criteria ot X 1s

(i) = E{” e (X (2),u(X(£)))d| X (0)= i} 0 E i€ D (3)
where a>0 1s a discount factor; the average-cost expectation criteria 1s
7 =lim 2E{| fXwXw)dtfiveq ()

Since X 1s ergodic, 7°= E?r(uv(z))f(z v(i))=n"f". In CTMCPs, the objective of opti-

mization 1s to select a pollcy so that the right-hand of Equation (3) or (4) attains the mini-
mum.

3 Performance potentials
For any vE€ 2, ,a>>0, let R'=]; “e *P*(2)dt. It is easy to prove that (a] —A”)R} =
R(al—A*)=1, this is, [¢ e ®*P*(t)dt=(al—A?)*. From Equation (3),

—+ o

’?3"(”:5” e F(X(t),v(X(t)))dt| X (0)=i}=

0

rm ““Epu (£,0(i))f (rv())de.

0

Le{til’lg 71’3:(7?:(1)977:(2)! 97? (M)) s WE have

7 -—J‘ e P (t)f'dt = (al — A" ' [ (5)
o
We define the discount Poisson equation ot a CTMCP as
(al — A" +Aer”) g, = [~ (6)

Here, g?is a column vector. Let P*=A"/A+1, and B=A/(A+a). Then P*is a stochastic
matrix, and 0< 8<C1. Since (I—BP*~fBen’) is nonsingular'*, (al—A*+Ren") is also non-
singular, and there exists uniquely one nonzero solution to Equation (6), 1.e. , go =(al—
A*+Aer”) ' f*. If a=0, then
= (— A" 4+ Aerr®) ' 7 (7)

We call Equation (7) an average-cost Poisson equation of a CTMCP., g"=(g"(1),+,g"
(M))" is a performance potential vector, and g*(:) is a performance potential. Especially,
when A(i,v(i))=1,YViEP,vEN., we have g'=(—A"+en") " f, which is equal to the
definition of performance potential in {4 | and [ 9]. From Equation (2), it is easy to prove
the following lemma, and we omit the details.

Lemma 1. Under Assumption 3, for any v& 2, and a=>0, we have

a) 7 {al — A"+ Aert®) ' =n"/(A+a),

b) (el —A*+Aen®) te=e/(A+a),

c) (al—A?) le=e/a.
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Using a) and ¢), we have (al —A?) ' =(al— A"+ Aex”) ' +Aen” /L a(A+a) ]. Right-
multiplying both sides of the equation by f*, and combining with Equations (5) and (6)
leads to

e = g+ Aden?/[a(A 4 a) ] (8)

4 Average-cost optimality equation

For a-discounted problems, we summarize Puterman’s results as the following theo-
rem- %,

Theorem 1. Under Assumptions 1, 2 and 3, for any a>>0, there exist uniquely a sta-

tionary policy v* €12, and a corresponding bounded real vector 1]';"* satisiying

0 = min{ f* — (al — A7 }.

vE ),
If let (v(1), -, 0v(M))=dED, (v (1), v" (M))=0"&D, and
0 = arg mig{f"“—-—(aI——Ad)Ufm} (9)
dc

then, for any v& 2., we have 0= — (crI-—Aa)r]ﬁm < fr— (aI——A”)Ufm :

In this section, we mainly discuss the average-cost optimality equation and the exist-
ence of the solutions on a compact action set, By Equations (2), (4) and (7), 1t 1s easy to
prove the following lemma and theorem.

Lemma 2. Under Assumption 3, for any v’ ,v€ 2., we have

qu___j?t.' — ﬂ.u[(f‘v' Av’gv;)___(f‘u __i_Avgtf)]-
Theorem 2 (Optimality theorem). v* & (2, is average-cost optimal if and only 1if
AT g <A L Vv E Q.

From Equation (7),we have (—A® +denr’ )g° ={ ,and den® g* =f +A" g .
Using Equation (2), we have Ax* g* ==* f* . Therefore 577"* =f + A" g* . We have
the following corollary.

Corollary 1. v €, is average-cost optimal if and only if

€77U* = min{ f* + A’¢" } or 0 = min{ f* + A%g"? —en¥ ) (10)
‘L'Eﬂs vEﬂs
Equation (10) is called an average-cost optimality equation based on performance poten-

tials of a CTMCP,
Theorem 3, Under Assumptions 1, 2 and 3, there exists a two-tuple (7, g) corre-
sponding to one optimal policy satisfying
0 = min{ f* + A’g — e} (11)

vE N
In addition, if (7' ,g") corresponding to one policy 1s another solution to Equation (11),
then 7' =7,

Proof. Choose a discount factor sequence a, v 0. From Theorem 1, for each a;, there
exist an action 0, € D and an action 0y &€ D, corresponding to the unique optimal policy v, ,
satisfying Equation (9). Since D is compact, we can choose a subsequence {Skj b of {0} )
which converges to an action d& D, Then the corresponding subsequence {35;} of {0y} al-
so converges to an action 0~ € D, Furthermore ¢ and & satisfy Equation (9). To simplify
subsequence notation, denote {&;} by {k}. Then

() = fﬁ* _(akI—"Aa*)vaﬂ ‘q/:\fw‘—‘(akl‘"Aﬂ)vjEﬂ! 'UEQ; (12)
From Assumption 1, it is easy to verify that, for any i€ ®, a,; (v(i)) and 7 (i,v(7))

are continuous functions defined on D(1), So, lim7* =limn* f% = £ =4 , and
=00

oo
Iimgj* = lim (e, ] — A% +den® )71 = (— A" Fler® )T =g

E—= o k b0

Substituting Equation (8) into Equation (12), and using Lemma 1 (¢), we get
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% gfm—(akl—Av)gj? ""A Aaé’??a:g.
b

A
A+ akev

Letting #—>oo (a,~—>0), we obtain 0= P+ A% """‘6’775% < f*+Ag? —-e?;"sm . That is, (7759:} ,
g’ ) satisfies Equation (11). If (5/,g") is another solution to Equation (11), by Equation
(10) we obtain 7 <7’ and ¥ <{7'. Therefore ¥ =7 .

0 = fﬁ* — (a,] — A% )gij

S Value iteration algorithm
Letting f¢= f*/A, we have the following value iteration algorithm.

Stepl. Let £=0,e>0; select an arbitrary M-dimensional vector h°.
Step2. Choose a policy v, such that, for each 1€ @,

M
ven (i) € arg min {fG,d) + D) P, (dIR ()] (13)
7 =1

4 EDCid
Step3. Let h*T! = fu+1 4 Pus1 p*,
Stepd. If sp(h*"' —h*)<e/A, let v.=wv,,; and exit; otherwise, let # :=%+1 and go to
StepZ.
Here, sp(h*™' —h* ) =(A*"" —R*) (" ) — ("' —h*) (i, ), and ¢* =arg max{(h*"' —

¢ P
h*) ()} ,i. =arg min{ (A" —R") (D) }.
e P
M
Assumption 4, Suppose pu= in{ 2omin ; (d;), P, (d,) ]>0.

ns€EPid, €D Cr3d €D CsD =1
Theorem 4(Convergence theorem), Under Assumptions 1~~4, the above described al-

gorithm stops in a finite number of iterations, and leads to an e-optimal policy v..

Proof. For any k, fu%+1 4 P%a BA< f% + Puh*, fu 4+ Puh* L <] e 4 Put B0,
Therefore, it is easy to prove that
sp(B — R =W — A G ) — (B — M) L) <

(Pa (B —h* D)) G ) — (P (B — AP D) )G ) <1 — ) o sp (Wt — RFY),

Letting Y=1—u, by deduction we get sp(R**' —h*) <7 « sp(h' —h°). Since u>0, we
have 0<C¥<C1. Thus for any given constant € >0, there exists an integer K such that
sp(h**' —h*)<e/A holds as £>K.

Now, let #>K. For any v€& (2, , 7;“::71"’]‘“:/17?”?”, and 7*P*=n". Then
Po o= o= A% (%1 4 Puetht — h*) = Arte (B — hE) <C A e max{(A* — B*) (1)),

16 QD
Equation (13) yields f*° +P¥ h*>=fun +Pur h*=p**", so
.'71:* _ )JI'U* (711* +I’5U* }Zk __bk) ;MU* (hk+1 _hk) ;A . min{(h“’l _hk)(z)}

i€ o
From the above equations, we obtain 7% —»n* <A« sp(h*"' —h*)<Te, that is, v, is an e-op-

timal policy. N

6 A numerical example
Consider a CTMCP with finite state space $=1{1,2,3} and feasible compact action set
D()=[0.5,20],7=1,2,3. Under a policy v=(v(1),v(2),v(3)), elements of the transi-

tion matrix corresponding to an embedded Markov chain are of the following form
7

piu(v(l))=1—e v 2, pr2 (v(1)) =—5e "7,

p1s (v(1)) :%——e*““ e Do (0 (2)) :13—2:231 ;

pus (v(2)) =3¢, paz (0(2)) =1 Py (v(2))— paa (0(2)) 3
pgl(mz))::ji:z, Pz (0(3)) =1 L:_EB;Z

Pa2 ('-’1)(3)):1“*}'331 ('0(3))“}933('0(3))-
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The performance function is f(i,v(i))=In[ (14+)v (i) JHi/2v(i), and let A(i) =1,i=
1,2,3.

This problem can be solved by using a direct gradient-based method'''). With an ini-
tial policy v,=(1,1,5), we obtain a policy v* = (0, 71026319,0, 87263717, 5. 54840733)
that is assumed to be optimal, the corresponding optimal cost is 7* = 1. 88858599. The
whole computation time is 19. 4 seconds. If we use the value iteration method with the
same initial policy v, and different €, we obtain the results shown in Table 1.

Table 1 The results obtained by using the value iteration algorithm

£ Ue 1}"1.- t;(s)
0.1 (0.70191875,0. 86868196,5. 42041131) 1. 88861989 0. 05
0,01 (0.71083730,0, 87297918,5., 56273383) 1. 88858632 0, 11
0. 001 (0.71038481,0. 87264556,5. 54579576) 1. 88858600 0.17
0. 0001 (0, 71025866,0, 87263011,5. 54757805) 1. 88858599 0. 22

From Table 1, we see that the value iteration algorithm leads to an e-optimal policy v,
with high speed. For large-scale problems, the algorithm will have a notable advantage o-
ver the traditional gradient-based algorithms in computation speed. Observe that, in each
iteration of the value iteration algorithm, we only need to search an improving action for
every state respectively. But in a traditional gradient-based method, we have to search an
improving policy in an M-dimensional gradient direction and calculate potentials.

7 Conclusions

We conclude that the optimization methods for CTMCPs based on Markov perform-
ance potentials have obvious advantages. First, we only need some weak assumptions, and
the Assumptions 1~4 in this paper can be satisfied in many real systems; secondly, the
proposed iteration algorithm will ensure an e-optimal policy with high speed; in addition,
the methods make parallel computing possible. Therefore, the results of this paper pro-

vide a new way for performance optimization of large-scale real CTMCPs, such as queuing
networks.
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