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Abstract Direct model reference adaptive control (MRAC) with hybrid adaptive law is studied in
this paper. For the hybrid MRAC scheme, we prove rigorously that all signals in the closed-loop
system are bounded, meanwhile the tracking error satisfies e; € Sz (A? + A% ) +db + 1/48.
Compared with control schemes in [ 1], the hybrid MRAC has the following advantages: (1) the
smaller computational effort during implementation, and (2) the better robustness properties in
the presence of measurement noise.
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1 Introduction

Many good results on robust model reference adaptive control (RMRAC) have been
obtained'™, In[1], RMRAC schemes for continuous systems are classified as direct and
indirect according to different choices of parameters. The parameter estimate ¢(¢) obtained
by the two approaches has the same character: 0(¢) is continuous with time ¢, 1. e. , there
1S a new estimate at each ¢.

Direct model reference adaptive control with hybrid adaptive law is considered in this
paper. The idea of the control scheme is to update the parameter estimate at some in-
stances of time. Let t,=%kT,, where T,=1¢,,, —t,(=0,1,2,-++)1s the sampling period;

the parameter estimate on the unknown parameter 8 (parameter of the controller) is to
generate only at discrete instances of time t=0,T,,2Tg,**. Compared with the control
schemes in [ 1], the hybrid MRAC has the following advantages: 1) the smaller computa-
tional effort during implementation, and 2) the better robustness properties in the pres-
ence of measurement noise. For the control scheme combining the continuous system with
discrete adaptive laws, since the parameter estimate #(z) is not differential, some key tech-
niques used to analyze stability of adaptive systems in [ 1 ](such as the swapping lemma)
can not be used. Meanwhile some properties of parameter estimation may be changed ac-
cordingly, hence, how to analyze stability of this kind of adaptive systems theoretically
constitutes the main work in this paper.

The paper is organized as follows. The first section 1s introduction. The design
scheme of hybrid MRAC is given in section 2. In section 3, we prove rigorously that all
signals in the closed-loop system are bounded, meanwhile the tracking error satisfies ¢; &

S AP+ ALY +di+1/a,’.
2 Design of hybrid direct MRAC

2.1 Problem statement and assumptions
Let us consider the following plant.

vy = G, () (1 +pA, (D) (u, +d,) (1)
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where G,(s)=Z2,(s)/R,(s) =k, Z,(5)/R,(5)y R,(s)=5"+a,_,s" ' +++day,s Z,(s)=b,s" +
O 8" F o +by s b=k, (5,(s) is the transfer function of the modeled part of the plant,
Z,(s)=k,Z,(s), A,(s) is unmodeling dynamics, and d, is a bounded disturbance, i. e. ,
there exists a constant d, >0 such that |d, |<d,. a;s b;(G=0,1,++,n—1,;=0,1,+,m)
are unknown parameters, and ©#>>0 1s finite.

The control objective is to choose u, such that all signals in the closed-loop system are
bounded, and the output approaches to the output y, of the reference model as close as
possible

Zm(sl

Ve = W, (s)r = k, Rm(s)r

(2)

where r 1s a bounded reference signal.

For the above plant and reference model, we still adopt the assumptions for the ideal
case (1, e, , A,(s)=0, d,=0):

Plant assumptions:

P,: Z,(s) 1s monic Hurwitz polynomuial.

P, : The relative degree n"=n—m_=>1 ts known.

P;. The sign of £, 1s known.

Reterence model assumptions.

M,: Z,(s) and R, (s) are monic Hurwitz polynomials of degree g, + p,.(p.<<n), re-
spectively, and W, (s) is analytic in Re [ s |=>—23,/2 for some known 6, >0.

M, . The relative degree is n" .

For unmodeled dynamics A,,(s), we need the following assumptions;

S,: For the above &,, A,,(s) is analytic in Re [ s]>—9,/2.

S,: W, (54, (s) is strictly proper.
2.2 Parametric model

We develop an appropriate parametric model according to the desired controller pa-
rameter 8" , then choose an adaptive law for unknown parameter §°. (1) can be expressed

as
R, (s)y, = k,Z,(s)u, + 0 (3)
where 7,=4,Z ,(s)(pA, () (u,+d,)+d,). Adding and subtracting £,Z,0"'w for (3), we
obtain
R,(Dy, =k, Z,(s)(u, —0"w) +k,Z,(5)0"w + 7 =
k,Z,(s)(u, —0"w) +k,Z,(s)(0 w, + 60w, +0; y,+¢csr)+7n (4

where 0° = (0,7,6,7,0; ,¢; )T is parameter of the controller, w=(w{, w;, y,,r)", w =
Q(S) a(-’i) 9 3 T : ~ :

y Wy = y ale)=(s""7%, 7 7 ,+,5,1)", A(s) s known Hurwitz polynomial of
Al @ = p(n Y AI=06"T0s »1)75 Als) i POty
degree n—1, and A(ls) is analytic in Rel s |==>—¢,/2. From the matching equations(please see

1] egs. (6.3.12)~(6.3.13))
(ACs) —07a(s))R,(s) —k, (07 al(s) +0; A(s))Z,(5) = Z,(s)A ()R, (s) (5)

. Rm
Cqg —— kp (6)
where A(s)=A,(s)Z,(s). From (3)~{(6) 1t is easy to see that
L pe
Y, — Y = {Wm(s)(up FQ*Tm)+(A(S) 51 *a(S))Wm(S)'??l (7)
Co ,A(S)C(}

where 7, =pA,, (s) (u,+d,) +d,. Since 0" is known, the certainty equivalence controller is
chosen as

u, = 0w (8)

where 0 is the estimate of §* . Noticing (2), as the expression of w and " are constant, we
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can rewrite (7) as the following parametric model
z=0"¢, —7 (9)
where
9T
=W..()u, ¢,=(W,(Dw W, ()w; ;W,()y,,y,)" s 7= (Als) =01 als)

A(s)

Wm(5)7?1

(10)

Remark 1. The detailed deduction procedure of the equations can be found 1n chapters
6 and 9 in [ 1].
2.3 Hybrid adaptive law

Since §* is unknown, we now give an algorithm to estimate ". From the plant as-
sumption P;, the sign of ¢ is known. Without loss of generality, we assume that there
exists a constant ¢>0 such that ¢ >>c. Set t,=~kT,,where T,=1¢,11 —t,(k=0,1,2,*) 18
the sampling period, and denote 8,=0(kT,),k=0,1,2,+--. Then the adaptive law on 0" is
chosen as

9&1 :65-;-1‘*‘&&1 (11)
t 0 Chan = ¢
b1
6&_1 —== 9& —I"Pj (E(T)goﬂ(f) *Sﬁk)dr, AH_I = < TI (C CF(H )) Otherwise (12)
L, R S ¢ 1
u.TZ
— g7 |
(1) — Z(‘)mz (‘;f*’(‘), () = 1+ Jup I + Iy I3 + 92O (13)

where V1€ [tistii1)s | 2s= (5770 | 2() lzdra':)”2 , 7; 1s the last column of I, 7, is

the last element of ;. The estimation algorithm (11)~ (13)has the following properties.
Lemma 1. Let m,0,,T., and I" be chosen so that:

Pp P

2

H Ler.,

m m

2) 261 TsAm<1 ’ 20& T,;{m<1
Then

1) E,Em,ﬁk, A@kELm ’ CD(:E-H);?-"E
11) E,SmEX(jE), &ﬁkED(I]";)

m m

<C}

where

An = A (1) s Ay =0,y =0,y X(w)={z,ul [ |2(0)? |dr<c[]" [u(D) |drtc, Ve, T>0),
ky + N

kg | (&) lzécfi:0+m‘ |v(T) |dt+cy Vkosy NENT }1 ¢ 1s a finite con-

0

D(v)={{xk}€R"
7

stant, 7_7:511[) = | .
m

Proof. The projection algorithm is used in this algorithm. Since the projection algo-
rithm can only make the derivative of Lyapunov function more negative, we can prove
[Lemma 1 using the method of Theorem 8.5.9 in [1].

Remark 2. The reason of using the projection algorithm is that c¢yu+1) =>¢ can be satis-
fied, the result can avoid the problem of zero divider, therefore (24) can be obtained.

3 Main results

We give the main results in this paper.

Theorem 1. Assume that the plant (1), the reference model(2) and unmodeled dy-
namics A,, (s) satisfy assumptions P, —P;, M, —M,, and S, —S,, respectively. The hy-
brid model reference adaptive controller consists of (8), (10)~(13). If the following con-
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ditions are satisfied:

2cv TA, <1, 20, TA, <1,
then there exists 4" >0 such that V& [ C,z" ), and all signals in the closed-loop system
are bounded and the tracking error ¢, =y, — y,, satisfies

€, & S(#2 (A° ““Ai) ""d(% -+ 1,&25),
0,
A =0 o a1 s A = (WAL [y OE

where ¢, 1S a constant, A=
ACs) 28

(0,0, 1y SO ={zx:[0,00)r»R"| |"" T | x(t) |?de<<cAT+c, V1, T=0,c,A are constants}.
For simplicity, in the procedure of the proof, sometimes the polynomial operator X(s)
1s denoted as X, x(¢t) 1s denoted as x. Before giving the proof of Theorem 1, we need a
[emma.
Lemma 2. For the HMRAC scheme, for any 6€ (0,3, ], define m% () =1+ |lu, %+
| v 36+ 55 (£) 5 then

) @ : “““'”2“’, i—=1,2 and 2 €L,

my my my

> 1 0€L_, then Y2, 2o, @ WHo ““‘i’”, “j—PNCL, ,

my; my My my ny m g

i) 1f 0, ¥ €L.., then [ ] L.,

ey
V) ﬂ’ E&, ” Ly ” ’ W(S)GDP(:LE ,
my my My s

v) For 0=0,. the above conclusions are sull true,
where W (s) is any proper transfer function that is analytic in Re{ s |>>—6,/2. | x| denotes
the norm of |z, |+, m® is defined by (13), n*=|u, I%a{: + vl 25, » and @, is defined by
(10).

Proof. Similar to the proof of Lemma 9.8.1in 1] .

We now give the proof of Theorem 1. Without special explanation, |z, | .s is denoted
as | z||. In addition, in the procedure of enlarging inequality, the coefficient is often ex-
pressed by c.

The proof of theorem, ~

Stepl. Express the plant input and output according to the parameter error term ¢ w.

From (7) and (8) and since ¢; is a constant, the closed-loop system is obtained as

~T
v = Wo () (r+ 55 )4, (14)

0

By (1)1(5)9(6) and (14) wW¢e gEt
§
u, = G;l(s)Wm(s)(r - )+ 7. (15)
0
k 0. als)+65 A(s) Als)—80Tals)

s Rm m L, = : i F _
where ¢ k y S As) W, (s)n, 7 A W, (s)n. From as

sumption P;, we know that there exists a constant 0 >0(0<.0,) such that G; ' (s) 1s analyt-
ic in Re] s |==—0/2. Define
mi () = 14 Juu? 4+ |y 12 + 550 (16
Since G, ' (s) is analytic in Re[s|=—0/2, n=pA,.(s)(u,+d,) +d,, (14)~(16), as-
sumptions M, ,M,, §,,S; and A(s) i1s Hurwitz polynornial, and 1/A(s) is analytic in Re
(s ]>>—0,/2, using Lemma 2 and Lemma 3. 3.2 in [ 1], we obtain
ms << c+cllgle|? + AL md + d (17)
Step2. Consider the properties of parameter estimation, and determine the upper

bound of ||#Tw|. From (10), 7 = pA, (s) (u, +d.) +d., assumptions M,,S,,S,, and

Lemma 2 and LLemma 3.3.2in [ 1], we have
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g
71 <p| 2208w (98, Nuylay +edo <cutm +edy  (8)
28

¢
where m is defined by (13). Noticing m>1, u is finite, and A<{oco, we have %E L.

From iv) and v) of Lemma 2, 2’ € L... Therefore from the assumptions of Theorem 1 and

Lemma 1, it is easy to see that the algorithm (11~13) has the properties 1) ~i1i) of Lemma- 1.
For Vt€([t,,t,41), constitute function

f(t) = 6, 5’*“7:_ 6"(:—-@) (19)
It is obvious that for V€ [, st54; ) A (¢) has the properties :
1) 6(e) is continuous;2) |0(t) — 6, | < |0y — G| 3) 0(2) = &HT_“ 4 (20)

For V¥ :>=0, there exists positive integer 2 such that t€[ ¢, ,¢,4+,). From the conclu-
sion 2) of (20) and 6,=68(t,), we know

16(t) —0() | = |0() — O | < |y — O | = |20k |,

‘a(t)lglé(t)_ek’l"’_lak']g‘ﬂﬁk’] '9:3']!
Aby =8, ., —0,. By conclusion i) of Lemma 1, we know that for ¥ =0

a(t), 0(r) —0(¢) € L. (21)
For V¢,T>=0, there exist positive integers 2" and n such that &' T ,<t<<('+1T,,

(B +n—DT,<t+T< (R +n)T.. Thus by ﬁ—Z-ELm. The conclusion 2) of (20), and i1) of

LLemma 1, we have

+ (k-l-:-{—l)T —
j 18(2) — 6(2) | 2dr < Zj 18(e) — 6(2) | 2dr <
¢ (k+z)T
(k+n)T
o |f < T ZJ&‘T ;Zt((z‘;')) TS
CTI Pi+T 32 (t’) dr+ CT? !
Ji m®(7)

where ¢ 1s some constant. By the same way, it follows from 3) of (20) and i1) of Lemma 1
that

+T = +T 2( )
[ o jar< o] LD 4o 4o,

where ¢ ts some constant. Hence from the definition of X( ¢ ), we know that for V¥ :=0

8(e) —0(),0(2) € X(g) (22)

Define 8 (£)=0(2) — 8" , 8(t)= (BT (),07(2), B5(t), £o(2))7. Since 8(z) is differ-
entiable, using swapping lemma Al [1,P774], we get

W..(5)(0Tw) = 8T (W, (s)w) +W.(s) (W, (")) (23)
where W.(s) and W,(s) are strictly proper and have the same poles as W,,(s). Define ¢ (¢)
=ﬁ(t) _"6* y ObViOUSly, ﬁ(t) =9;3 ’ V ZE [tk o lp+1 ). By (12) ’ (14) ’ (23) ’ and the dEfinitiOI]

of w, and since ¢, is constant, we have

—em’ —n=§¢, = (g_"a)T?Op éT@ﬁ =
G—0)To, 4 jf W, () (0Tw)— W.(s) (W, (s’ )8)

c

GW (s) ((g —~9)TCU)+ Co Ty

gl

for any >0, where 50 =07, 07,07, ¢,=(W,. (Dol ,W,()ws W, (s)y,)". From Re-
mark 2, we know ¢, () =¢, ¥V ¢t=0. Hence from (10) and the above equality
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* —

W..(s) (éTm) :ig —-—em"—’—(?—-—g)"“goﬁwf(;;) ( (Wb(s)cuT)é)-—

Co Ll

W, () ((B—0)Tw)—c, 1, (24)
From (24) and swapping lemma A2 [1,P775], it follows that

Co

5w =0Tw+ (5—0)Tw=F,(sya,) (07w 407 &) + F(s,a)W=' (5) «

Ll em — (5= 0)7 g, + W.(9) (W, ()T~ LW, () (B~ ) Tw)—co, |+
G = 0 -
(§—0)Tw (25)
ar 1—F(syaq) _
where F(s,ay) = —, F,(sya,) =- , and Y a,>0,. By swapping lemma
(S“_a[})n o
A2 [1,P775], | F\(syas) | maéai, where ¢ i1s a constant independent of a,. Since a, >0, ,
¢
there exists a constant ¢ independent of a, such that
| F1 (sya W5 (8) || s << cal (26)

By (21),(22),(25),(26), Lemma 2 and Lemma 3.3.2 in[1], we get

D!

— g my |+ 10m, |+ pdem, +dy)

(27)
Step3. Use the B-G lemma to establish boundedness of m,. Substituting (27) into
(17), we have

57wl < £ J0m, |+ m )4 cai” Clemm, |+ |

My <<C ;2 ([ 0m, |2 4+m2)+ca (Jemm,||*+| (0—60)m,|?+ [ 0m, |’ +ptAlom+di ) +
0

cpzéim?—l—cdﬁgc—i—c( 12 Falt it AL )m§r+c(|gmf |2 (28)

Uo
where the constant ¢ of the second term in the last inequality 1s independent of a,, and

& = 2101 +at (Jom|"+16]"+0—5]" (29)
g
Note in (28), that the coefficient ¢ of the second term ir the last inequality is independent

of ay, and choose a, appropriately large such that —CZ—<1 . Then there exists ¢y >0, for

oy
IS [O by ) s
mt <+ cllgm | (30)
By (10), assumptions S;, S, and Lemma 3.3.2 in [ 1 we have

—— “I
gl A =004 (A O] Nule +edo < pamtads  (BD)
A(S)Co 260 v

—
(ACs) 0, a(s)]_#Wm(s)Am(s) . According to (22),(29),(31),and Lemma 1,

where A=

Als)c, 26,
~t+T ] . P+ T dE
2 [ 2n 2 A2 0
| e (r)drgc(ag - af ) (#A +m2(r))dr+c (32)
cd’ o)

< 9

mi(t) ~2°

where ¢ is independent of a,. Similar to the proof of P755 in [ 1], we have

aso

2¢(14a2 D HA?

From (30),(32), B-G lemma, there exists u, :\/ such that for €[ 0,

#2* ) ’

1

— & fﬁ}gzir)clr 8 —s) -::‘Eng\r}dr
e + 0| e e ds <<

o 0
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—&8 1 2n " 2 2 ol ——ﬁ(t—sl
—+ +a 2 A%t g+ﬂ 7] :ﬂ. ({—s}
rre (e’ ) Lol e (e’ )i <

J O
Choosing #* =min(y sus ), for u€[0,1" ), we conclude with mj< co,
Step4. Consider the tracking error. From (27) and m,<{oo, it follows that

57wl <c( 2 +abieal Jmt +clgm /| + i <

(55 +abical 1+ cl gl + (33)

where g is defined by (29). By (7) , (14), (32), (33) and m,<{oco, it is easy to establish
e, &€ S(pF (A HA)+ds+1/ad).

4 Conclusion

Direct model reference adaptive control with hybrid adaptive law is studied in this pa-
per. Compared with control schemes in [ 1], the scheme has the following advantages: (1)
the smaller computational effort; (2) the better robustness properties. The key point stud-
1ed in this paper is how to design direct model reference adaptive controller with hybrid a-
daptive law, and rigorous proot from theory 1s given.
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