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Abstract We propose a novel method for combining information streamed by a multi-sensor sys-
tem for visual surveillance. Information fusion occurs in two phases during which all cameras are
calibrated with respect to independent global Cartesian reference frames (set on the ground plane)
and then all frames are registered into a single coordinate system. The development of automatic
calibration and registering of visual data 1s crucial in visual surveillance applications because it
makes easier to install the monitoring infrastructure and, consequently, to develop more accessible
Visual Surveillance tools for the public domain., Machine learning techniques are believed to otfer
the best mathematical tools to handle the uncertainty and incomplete nature of surveillance data.
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1 Introduction

By far the most common approach to tracking in typical surveillance imagery uses pix-
el differencing and blob analysis. Typically motion detection extracts moving regions from
‘1 Trajectory tracking is employed to establish the temporal history of indi-
vidual objects. An iterative estimator (e, g. Kalman or «-3) 1s employed to update a first or

static scenes

second order visual trajectory model, Temporal correspondence (or data association) 1s a-
chieved essentially using simple Newtonian physics either locally for each object, or glob-
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ally by considering all possible object-observation pairings-*'. Additionally an appearance
model matching may be employed to improve tracking accuracy by comparing width and
height, shape or colour'® *, While surprisingly successful, maintaining temporal corre-
spondence is a significant problem particularly through occlusion and fragmentation where
the shape, dimensions and colour signature of the merged or tragmented observations do
not correlate well with the actual object, or where the trajectory model does not corre-
spond to actual object trajectory.

Two related problems are addressed 1n this paper. First the problem of frequent frag-
mentation and merging of moving regions caused by occlusion and low contrast processes.
These unexpected regions usually introduce considerable noise into the data association
phase of the tracker and, more subtlety, into the updating of the trajectory and appearance
models which is then propagated into the subsequent frames. Typical solutions are com-
plex and ad hoc split and merge procedures applied to observation and appearance model
primitives-® ",

The second problem relates to the choice of motion model. Linear pixel-based motion
models applied to trajectory and appearance models are too constrained to adequately model
the evolution of objects - particularly vehicles. The result is frequent loss of correspon-
dence as objects manoeuvre in the scene. On the other hand, more appropriate quadratic
models are easily mislead by observation noise. The difficulty lies in the problem of estab-
lishing global pixel-based noise models which are appropriate to both distant visually-slow

objects at the top of the image, and closer objects with larger visual velocities at the bottom.
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In this work, we introduce three mechanisms to address these problems which rely on
knowledge about the ground plane. First we develop highly discriminatory bounding-box
appearance models of scene objects which indirectly use the depth of the object to model its
projected width and height. Since, the spatial extent of an object is now a function of 1m-
age position, the tracker will be more robust when presented with the distorted observa-
tions which arise from fragmentation or occlusion processes. Second, the observations are
transformed onto the ground plane co-ordinate system within which a quadratic rather than
Jinear motion model is defined. Global real-valued noise models can be generated for obser-
vation and dynamic noise models. Finally, rather than relying on a labour-intensive cali-

{ v
-8J, the system relies

bration procedures to recover the image to ground-plane homography
on a simple auto-calibration procedure to learn the relationship between 1mage and world
by simply watching events within the monitored scene. Having calibrated each camera to
its local ground plane, Section 4 demonstrates how these ground planes may be registered.
Again a learning procedure 1s pursued in which the projected trajectory positions in corre-
sponding frames and their instantaneous velocity estimates are combined to create esti-
mates ol the rotation and translation. A clustering algorithm 1s used to locate the most

hikely transform between each pair of camera ground planes.

2 Auto-calibration of the ground plane

In this section a simple yet highly effective method of learning the image to ground
plane homography of the camera is presented which exploits the simple but reasonably ac-
curate assumption that in typical surveillance installations, the projected 2D image height
of an object varies linearly with its vertical position in the image ~ increasing down the im-
age from zero at the horizon. This height model 1s derived from the optical geometry of a
typical visual surveillance installation. In addition, such an assumption enables the use of
simple but highly discriminatory models of the appearance of scene objects which indtrectly
use the depth of the object to model its projected hetght. In this auto-calibration scenario,
the ground plane co-ordinate system (GPCS) is defined as follows:

The Y -axis Y of the GPCS is defined as the projection of the optical axis along the
ground plane. The Z -axis Z is defined as the ground plane normal, The position of the
camera focal point in the GPCS i1s *above’ the GPCS origin at the point (0, 0, L).

2.1 Ground plane projection
The 1mage plane 1s situated at distance f (focal length ot the optical system for the

iy,

camera) perpendicular to the optical axis z. In this configuration a point P on the image
plane has co-ordinates x'=(x.y,— )T, where x,vy are image plane posttions and f, the
focal length. The pixel co-ordinate system 7,j (representing the row and column position
respectively) 1s related to the image plane co-ordinate system by xr=a,(; —j,) and y=a,
(1,—1) where 1, ,7, are the optical centre of the image and «, and «, are the horizontal and
vertical inter-pixel widths. Thus
X' = (G —jo).al(G—i), — D' f

whete gfand afare the horizontal and vertical pixel dimensions normalised by the focal length.

An optical ray containing the focal point of the camera passing through the image
plane can be represented in vector form as x=px’ where u projects the point x* arbitarily.
Let Q be the point of intersection of the optical ray with the ground plane II. In order to
calculate the position x of the point @Q on the ground plane IT in the ground plane co-ordi-
nate system, one must convert the position of an image point x given the transformation
(R.t) between the image plane and local world co-ordinate systems i. e. X =y Rx +1t.
Writing the ground plane equation as n; + X=0, where the ground plane normal n;=Z,
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then the position X of the point Q is obtained by noting that X « Z=0.
p=—1./7Z+ Rx’ (1)
The local GPCS is delined with a zero pan angle. Assuming no significant roll angle,
then after some algebraic manipulation, the ground plane co-ordinates may be related to
the look down angle 4 as follows.

X al (g — 70) ) Y al (i — 1y)cosfd — sind ()
L &/(i—1,)sinfd—cosf® L al (i —1,)sinfd — cosl
Thus to compute the ground plane position of an image point, the following camera

parameters iy,Jj, sal sals and @ are needed. In our approach the optical centre 7,,;, is com-

puted by an optical tlow algorithm which robustly tits a global zoom motion model to a
three frame sequence undergoing a small zoom motion.
2.2 Projected object height
If one assumes that the height of a moving object is known (i. e. a person) then the
point of intersection X with the ground plane can be shifted along the Z direction by the
height H. Using x4, we can write X’ :‘quf"—t+ HZ. The new image point ¥’ corre-
sponding to the projection of the top of the person can be computed from the inverse trans-
formation RT (X' —t)to yield
ax" = ux'"+HR'Z (3)
where ) 1s the projection factor from the image plane to the top of the person. Substituting
v« from Equation (1) and t, =L yields
X = /11 (H RTZ-—E -LRx’xf) (4)
To measure the projected vertical height of an object, we simply define a plane A con-

taining the optical centre and the image plane raster line containing the new point x” (see
Fig. 1(b)). The normal n, of this plane is defined by the cross-product between the projec-
tion line Ax” and the raster line direction vector x as follows
1 A A L
o A (HR Zxx*i » Rx
The raster line containing the point x” can be thought of as lying at a distance A above
the projection of the bottom of the person - see Figure 1(b). Therelore the point vertically
above x” can be expressed as x=x"+ Ay and belongs to the plane A. Substituting x’ + Ay
into the equation of plane A, n, * x=0 generates

,x’X.ﬂr) (5)

n, » X
iy e ;

Further simplification can be derived by expanding the numerator and denominator of
Equation (6) using Equaticn (5) as follows

h =

(6)
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— s o x =H(R™Z X x)s x' — = L (x" X x) o x (7)
Z + Rx
. =H(R'ZXx)+ x’ (8)
since (¥’ Xx) » xX’=0, and
— e :H T e — ®
AL, o Y (R ZXx)ey Z-Rx_f(x XXx) ey
H(R Z><x) y Z-Rx; (9)

where(x’ Xx) » y=f. Where there is a zero roll angle, Equations (8) and (9) combine to

generate the following expression for image plane height & which depends only on object
height H, camera height L and vertical image height ».

§ ( f* — y*)sinfcosfd + yf (cos’d — sin°H)

ysinfcosf — (ecos’d— L/ H) f
For typical camera installations, A can be shown to effectively vary linearly with verti-
cal image position relative to the position of horizon. The intercept with the vertical posi-
tion axis (or Ah=0 axis) defines the horizon where objects become infinitely small. Such a
linear model may be extracted from moving regions of the monitored scene-see Figures 2"

and 3. Currently the operator drags a line segment along the ridge structure to define the
gradient ¥ and horizon z,.

(10)

o=

(a) PETS camera 1 (b) PETS camera 2 (c) Football
Fig. 2 PETS cameras 1,2 and football
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Fig. 3 # =0 indicates vertical motion, while = = n/2 refers to Horizontal motion. The lower plot
illustrates that Person width does not depend on orientation. For Vehicles, the width increa-
ses from a minimum at § =0 (face on) to a maximum at §= T n/2 (side views)

2.3 Ground plane calibration
Since the vertical image height of an object is independent of the horizontal image po-

1) PETS 2001 Datasets visualsurveillance. org & Fulham FC
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sition of the projected object, the following derivation may assume, without loss of gener-
ality, that the object 1s located on the vertical axis 7. e. +=0. Two key positions of a pro-
jected object may be defined at i=1, at the horizon, and i=1i, at the optical centre of the
image. At the former, the look-down angle @ may directly be related to the horizon param-

eter 7, extracted from the accumulated training data acquired in the learning stage described
in Section 2. 2 1. e.

cotl = al (i, —i4) (11)
For the latter case, consider an object of height H standing on the ground plane point
given by the projection of the optical axis. From Equation (10), the vertical height at this
point h(i=1i,) may be related to the look-down angle as follows
h Hcosfsing
f L= Heos"d i
An estimate of the height 2~ may also be generated from the learnt linear projected
height model i.e. h(iy)=a,y (i, —1i,). Combining this with Equations (11) and (12), the
following expressions for the camera parameters § and a/ may be derived

yL_hH f o coty
H 1_}/! ay (zﬂ—zh) (13)

sin“@ =

3 Model-based tracking

In this section, the projected height concept is employed to define simple yet highly
effective bounding box appearance models for the principle object types within a surveil-
lance scene. The representation is composed of two vertically adjacent connected bounding
boxes - the object component and base component. The base is the large number of back-
ground pixels beneath an object and the shadow regions which are typically segmented with
the object pixels themselves. The object component is defined by 1) the vertical extent ot
the object - the height model, 1) the horizontal extent of the object - the width model, and
i11) the vertical extent of the base region - the base model. These models, as illustrated in
Fig. 4, are defined relative to the 2D position of the object - the 2D projection of the posi-
tion of the object on the ground plane. Three different models are currently used corre-
sponding to each of the principle vehicles types ¥ in the set W= { Person,Vehicle,Large

Vehicle ;. As with the ground-plane auto-calibration, the parameters for each of these
models must be computed in a learning procedure.

(b) Detected pixels (¢) Object model
Fig. 4 Modelling detected events: Images show

i = I'(i—1,)
w =078 — i) (14)
B= B ()™ (1 — 1)
The Height Model. The expected pixel height u (see Equation (14)) varies linearly
with vertical image position 7. Different height models I' , y & ¥ must be defined for each

type of object ¢ - see Fig. 3(b). A further assumption is made that the projected height of
vehicles does not depend on the orientation of the object.
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The Width Model. For vehicular objects, the projected pixel width w varies as a func-
tion of depth (and hence varies linearly with position i) but also varies as a function of the
3D orientation of the object. The 3D orientation of a moving vehicle is correlated with the
direction of i1ts visual motion. This relationship can be clearly demonstrated in Fig. 3(a)
which plots 2D width (normalised by vertical height) against the visual motion direction §

for a large set of detected regions. Thus the projected width of an event is a function of
both 7 and the direction 4.

The Base Model. The vertical extent of the base again varies linearly with the vertical
image position (Fig. 4(c)). In dull weather conditions, this base area is usually a small
traction. However in bright weather conditions, this base area can become significantly
larger. Currently, the base model parameter 8% is manually set as a proportion of the
height model. Ideally some environmental illumination parameter ¥ would select the appro-
priate ratio.

4 Registering multiple cameras

In Section 2.1 the positions and velocity of objects tracked in each field of view were
back-projected onto a local reference frame set on the ground plane, The transformation
between cameras 1s unknown but it can be easily calculated if the correspondences between
object positions are known between views™ . In our auto-calibration scenario, we cannot
assume that the correspondences are known. Further, while we assume the availability of
object positions with associated velocity vectors, no temporal association 1s assumed.

The Hough transform approach'** has been adopted to recover the inter-camera trans-
formation by taking advantage of the fact that the ground plane coordinate systems of tem-
porally synchronised observations of the same 3D object are related by a simple rotation ¢
and translation T transformation.

X' = R(WX+T
V: = R(p)V
where X,V and X',V are positional and velocity observations measured in the local GPCS
of two cameras C and C’ respectively. Note that the velocity estimates are computed from
the partial derivatives ot Equation (2) respect to image coordinates, and the 2D tracker im-
age position (7,7) and visual velocity (u,v) estimates 1. e.
Ve =%, 492, v, =2, 4 ¥
oy o7 o1 o7
In every frame interval, each camera outputs a set of measurements about all objects

(15>

v (16)

located in i1ts field of view. As object correspondences are unknown, every pair of observa-
tions from each of the cameras must be used to generate a candidate estimate of the trans-
formation. Given a pair observations X, ,,V, ; and X,..,V,,6 at time ¢t from cameras C’ and C
respectively, transformation estimates may be defined as
COS¢Y,. i, = Vf.,i- V,,,j (17)
T,., = X.,—R(... )X,
where V is the unit vector in the direction of V. If A, and A/ are the sets of observations in
frame ¢ for cameras C and C’ respectively, then the set of all observations
{Sbr;i,j!Tr.i,j;viEA:-! V] GAr,Vrgt} (18)
should ideally exhibit a distinct cluster of estimates around the true solution ¢, T within an
noise floor of uncorrelated false estimates generated by incorrectly corresponded observa-
tion pairs and noise observations. To detect this cluster, the space could be tessellated into
bins and a Hough transtorm technique applied to locate the maximum that correspond to
the optimal transtormation parameters. However, the range of translation values required

is difficult to predict a priori. Therelore to avoid the storage of the problems such a voting
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strategy introduces, a robust clustering approach 1s adopted. The expectation-maximisati-~
on mixture of Gaussian technique was implemented and adapted to iteratively perform the
cluster analysis on the incoming stream of transform estimates. The clustering process
continually reports the most likely transformations between cameras.

5 Results

In the following sections we evaluate the three stages of the overall approach separate-
ly. In Section 5.1 the accuracy of the recovery of the local ground plane 1s tested by com-
paring the actual and estimated look-down angles. The Tsai calibration results pertormed
on the PETS2001" were not particularly accurate at estimating the camera height and look-
down angle. Consequently the evaluation was performed on the three local installations il-
lustrated in Figures 5(a), (b) and (c¢).

........

(a) Camera 1 (h) Camera 2 (c) Camera 3
Fig.5 The TEST installation viewpoint figures (a), (b) and (c¢) with their corresponding image
height vs image vertical position histograms

In Section 5. 2 the Ground Plane Tracker (GPT) is compared to the Image Plane
Tracker (IPT) and further summarised. Section 5. 3 illustrates the process of camera
ground plane registration, and evaluates the accuracy of the camera registration results on
these and the PETS datasets.

5.1 Image to ground plane calibration

The test installations tllustrated in Figure 5 involve different types of camera placed at
different heights overlooking a common car park scene. The car park has been surveyed tao
generated real-world ground plane positions in a common coordinate system. These points
have been selected to ensure that each camera has ten well distributed points in the image
plane. The convex hull of these points contains most of the car park and over fifty percent
of the visual plane. The real look-down angles and camera heights have been established u-
sing surveying equipment from the ground plane projection of the correct optical axes.

As described in Section 2. 3 the projected height model {or each camera can be recov-
ered by accumulating in a height versus vertical image position space and litting a straight
line to the resultant histogram. Results for Cameras 1, 2 and 3 are shown in Figures 5
(a), (b) and (c¢). In conjunction with the measured height of the cameras above the
ground plane, the parameters ot these models can be used to derive the extrinsic and some
ol the intrinsic camera parameters - see Equation (13). To compare the accuracy of the
proposed method, the ground truth data, the traditional Tsai'®' technique results and the
measurements generated by our approach are tabulated in Table 1. In all cases, the accura-

cy of the Tsai method and our own 1s comparable, with the shallow angle of view of Scene
3 being the most problematic. We employed the Tsai results to confirm that the camera
had no significant roll i. e. rotation around the optical axis - typically less than 4°. The
method proposed 1n this work accurately located the look-down angle although care had to

1) The PETS2001 datasets (visualsurveillance, org) are problematic as they contain so {ew tightly distributed caltbra-
tion poInts,
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be taken to correctly {it the linear model to the projected height ridge of the histogram.

Table 1 Look-down angle results. For clarity the look-down angle has been redefined as x/2—¢@
defining the angle of intersection between ground plane and optical axis

Test Correct Height Tsai I—Ie:lgljnt

HRE y Horizon 1, Correct Angle T'sa1 Angle Our Approach

Installation (m) (m) (") (") (")
Camera 1 9. 1 9.9 0. 195 —22.3 16 16. 7 15.5
Camera 2 13. 9 15.4 0. 109 — 174 24. 3 24. 5 23. 3
Camera 3 6_._7 5.7 0. 255 17 13.5 7.7 11.7

5.2 Model based tracking

The Ground Plane Tracker (GPT) embeds the mechanisms introduced in this paper
within a standard tracking framework, and is compared against a standard 2D tracker - the
Image Plane Tracker (IPT). Both mechanisms employ a Kalman filter model whose obser-
vation and dynamic noise models are learnt directly {from the data. The two methods are
summarised in Table 2 below. Data association is performed by searching predicted boun-
ding boxes for union of overlapping moving regions whose area is greater than 10% of
bounding box area. Model instances are instantiated from unassigned moving regions’
whose areas are greater than some common threshold - 10 pixels (in quarter-size PAL
frames). In neither case is any additional appearance matching implemented to improve da-
ta association, Observation position error 1s defined as deviation from predicted object di-
mension. Each object has a time-to-live counter (TTL) defined as min(TTL, 10) which i1s
incremented if inter-frame match recovered, and decremented if no match recovered with

object deleted when TTL<CO.

Table 2 Implementation details of standard and proposed tracking algorithms

Algorithm Image Plane Tracker Ground Plane Tracker
Measurement T,y image pixels X,Y ground plane-Eq. (2)
Motion Model First-order x,y.2 , 3 Second-order X,Y,X,Y,X,Y

Appearance Model First-order Kalman filter on | P051t1ctn and velocity c:t:_mstrained
bounding box dimensions A,w,h ,w bounding box model of Eq. (14)

To compare the different approaches a tracking error is defined as the number of track
failures per 1000 track frames. A track failure occurs when the tracking identity of any
ground truth object changes. Track frames are the total number of object appearances for
all tracks in a sequence. The experiment is run on three ditferent datasets-see Table 3: the
PETS 2001 Dataset 1 (an occlusion rich dataset of distant objects in good lighting condi-
tions), the Kingston Car Park Dataset (although relatively free of non-static occlusions,
objects exhibit considerable motion variation against background undergoing frequent and
severe lighting variations caused by intermittent direct and reflected sunshine), and the
Football Dataset (large number of objects undergoing correlated and rapidly changing mo-
tions). Note that the tracking results reflect the challenging nature of the Kingston data
sets and, in particular, the Football Dataset. Nonetheless, the proposed tracker outper-
forms the traditional tracker which is easily misled. Greater insight into the problems of
trackers can be gained by determining the nature and frequency” (% of frames) of the fail-
ure modes—see Table 4.

Table 3 Tracking error

Tracker PETS DIRC Foothall
1P 3.2 1.5 49
GPT 1.9 1.1 11

1) Frequency will be highly dependent on dataset.
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Table 4 Tracking error

_ o | Failure
Failure Description of data association failure
IPT(%) GPT( %)
Fragmentation Unexpected small displaced observation 9 2
Static occlusion Unexpected small displaced observation 23 10
Object occlusion Unexpectedly large observation 36 34
Motion model Motion model teo constraining 21 34
Stationary object Object merges into background 11 20

Both trackers loose track of objects that are stationary for several seconds-determined
by a TTL parameter. However the principal weakness of the traditional tracker 1s when
dealing with situations where 1) fragmentation or static occlusion processes shrink the
search window with consequent failure to locate validating observations, and 11) occlusions
which widen the search window causing the tracker to be deflected by the occluding object.
These problems are more likely in situations where the trajectory deviates from the as-
sumed motion model.

5.3 Multi-camera calibration

Fig. 6 plots the tracked object trajectories recovered from our motion detection and

tracking software'!'! and projected onto the local ground plane of each camera.
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Fig. 6 Projected trajectories: note only a roughly contemporaneous set of trajectories are plotted

These observations are used to build the rotation and translation Hough space de-
scribed by Equations (17). The populated space and dominant cluster are shown in Figures
7(a) and (b) for the TEST and PETS datasets respectively. Note that these peaks are ro-
bustly recovered from an extensive noise floor. Produced by computing registration esti-

mates for every pair of trajectory observations, this floor arises from the need to avoid the
prior establishment of observation correspondences.
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The accuracy of the technique may be judged as before by comparing the registration
results of the method with the equivalent data supplied by the Tsat calibration method
(and the ground truth for the TEST datasets). Table 5 plots the rotation angle ¢ (in de-

orees) and distance |T| (in metres) between the origins of the two local GPCS for the
TEST and PETS datasets.

Table 5 Registration results

Measurements
Datasets Tsai Proposed
(") | T | G | T|
TEST 75 07,2 81 03.5
___EETE 76 27.9 70 29.5

Despite the poor accuracy associated with off-ground-plane estimates, the accuracy ot
the ground plane projections are in agreement with the correct values surveyed in the DIRC
datasets., Thus only the Tsai results are quoted in Table 5. The recovered values tor the
rotation angle ¢ and distance | T|are used to rotate and translate the data into a single co-
ordinate system (that of the second camera). The overlapped trajectories are displayed in

Fig. 8.

(b) PETS

Fig. 8 Overlaying trajectories

While not 1n perfect alignment, the accuracy appears sufficient to establish the corre-
spondence of any new objects that enter the scene. Any lack of alignment arises from a
number of sources: 1) any existing roll angle on either camera; 11) inaccuracies in estima-
tion ot the look-down angle and intrinsic parameters of either camera; and 11) view-de-
pendent positional bias in trajectories. The presented results are based on the location ot
the foot of an object on the ground plane. This position has demonstrated a strong view-
point dependency when applied to car objects or person objects in the presence of shadows.
A more consistent vertically weight centroid position will increase the degree ot alignment.

6 Conclusions

A central objective of this work {focuses on the development of learning techniques for
use in plug-and-play visual surveillance multi-camera systems. Many camera calibration
techniques exist, however most of them require the assistance of an expert to tune a set of
parameters. The underlying strategy i1s to develop a suite of algorithms that could be in-
stalled by non-technical personnel, and as much as possible based on self-adjusting tech-
niques that learn how to adapt to the camera set-up, the environmental changes and possi-
bly to weather conditions. This paper presents a novel camera calibration approach, based
on two separate stages,
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In the first stage a linear model of the projected height of objects in the scene i1s used
in conjunction with world knowledge about the average person height and the height of
each camera to recover the image-plane to local-ground-plane transformation of each cam-
era. In the second stage, a clustering technique (based on expectation-maximisation) 1s
then used to recover the transformation between these local ground planes. A comparison
between the proposed technique and the standard approach of Tsal was carried out. Re-
sults for both techniques, evaluated with ground truth measures, show that the accuracy
of the proposed approach is similar to Tsai's approach.

Although a more detailed evaluation 1s required, the presented preliminarily results
demonstrate that approach generates sullicient accuracy to enable trajectory data to be
fused within a common ground plane coordinate system between each pair of cameras. In
particular, to robustly support the plug and play the sensitivity of the approach to viola-
tions in the assumptions of 1) projected height linearity and 1) zero-roll angle must be in-
vestigated. Finally, the method had to be tested on a new data set rather than the
PETS2001 images as the lack of calibration points makes the recover of accurate camera
height problematic.
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The 5™ World Congress on Intelligent Control and Automation (WCICA'04)

June, 2004, Hangzhou, P, R, China
Call for Papers

The World Congress on Intelligent Control and Automation( WCICA) is now a bi-annual event and a
major control event held in China. The 5th WCICA (WCICA'04) will be held in Hangzhou of China in
June, 2004. The conference will provide worldwide researchers, engineers and professionals excellent
opportunities to get together and exchange their findings and views, The conference will focus on both theo-
ry and applications. In addition to the technical sessions, there will be plenary and invited sessions. All the
submissions will be reviewed and accepted ones will be included in the conterence proceedings. Topics in-
clude, but are not limited to.

P1 Theory and Method

P 1-1 Control Theory P1-2-2 Optimal Control and Optimaization
P1-1-1 System and Control Theory P1-2-3 Nonlinear Control
P1-1-2 Nonlinear Systems P1-2-4 Fault Diagnosis
P1-1-3 Large-Scale Systems P 1-3 Intelligent Control
P1-1-4 Hybrid Systems and DEDS P1-3-1 Artificial Intelligence and Expert Systems
P1-1-5 Distributed Control Systems P1-3-2 Neural Networks
P1-1-6 Modeling, Identification, and Estimation P1-3-3 Fuzzy Algoriths, Genetic Algoriths
P 1-2 Control Methods and Evolutionary Computing
P1-2-1 Advanced Control ( Adaptive Control, Variable P1-3-4 Intelligent Control, Fuzzy Control,
Control, Robust Control, H.. Control) and Lerning Control
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