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Abstract A method of combining multiple moving objects prediction schemes is presented that al-
lows a tracking framework to select and identily the best observation evidence in occlusion scenari-
os. The underlying framework tracks any objects in monocular image sequences taken from sta-
tionary uncalibrated cameras with {ixed focal length. A mixture model method 1s deployed to esti-
mate the static background relerence image. The tracking algorithm simply uses a constant accel-
eration motion model to track objects in the simplest scenarios. However, the main contribution is
the use of three simultaneous predictors with a least square correlation stage to select the most
likely object position. The three prediction schemes are an ¢—f§ tracking scheme, a Kalman filte-

ring method, and a region segmentation and matching method. The tracker 1s evaluated against
different image sequences each olfering different occlusion problems.

Key words Hybrid prediction, least square correlation, occlusion

1 Introduction

The presented work is part of the PRISMATICA" project which i1s concerned with au-
tomatic visual surveillance of public transport environments by image processing methods.
PRISMATICA aims to integrate technical systems and operational processes to develop in-
novative security management systems for transport operators, and to develop and in-
tegrate tools to automatically detect a range of events, such as violence, trespass, conges-
tion, fires, suspect packages and suspect individuals, theft, vandalism, ticket traud. As
such, the project contributes to more general elforts to make public transport systems
more attractive to passengers, and more secure both for passengers and staff. The project
specifically aims to assess the pedestrian behaviour in stations. an event is triggered when
a pedestrian or object remains stationary in unusual locations or for an unusual period of
time, or when the scene 1s congested or overcrowded.

By tfar the most common approach to monitoring scene objects in typical mid-range
surveillance imagery uses pixel differencing to detect moving regions in static scenes'?,
blob analysis to extract observations of moving objects, and trajectory tracking to establish
the temporal history of individual scene events. The most significant challenge to this oth-
erwise successtul approach i1s the frequent problem of occlusion and fragmentation where
the shape, dimensions and colour signature ol the merged or fragmented observations do
not correlate well with the actual object observation. This can lead to either loss of corre-
spondence or mis-association particularly where the projected 2D width and height are also
derived from the dimensions of the observations. Such problems are usually addressed by
embedding appearance models which improve tracking accuracy by comparing the width
and height, shape or colour of observations with a model of the object.

A number of contributions to the tracking knowledge are made in this work. Primari-
ly, a hybrid tracking scheme i1s presented which integrates several sources of prediction: 1)
an ¢— (3 and 11) a Kalman filter operating on a linear motion model, and iii1) an appearance
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model which is used to predict the most likely position in the next frame given the appear-
ance of the object in the last. In addition, occlusion handling rules are introduced to pre-
vent the motion tracker being confused during occlusion processes, Finally a novel but
computationally etficient connected components-like technique is described which extracts
objects (or blobs) from the motion detection image.

Overview of Approach

The tracking algorithm tracks blobs t{rom {rame to trame and consists of performing
the following consecutive steps for each new current frame.

Maintenance of Reference Image Mixture of Gaussian methods based on Staffer and
Grimson''!—see section 3. 1.

Moving Object Detection Detection of foreground pixels (see section 3. 2), and extrac-
tion of candidate regions of moving objects 1. e. blobs—-see section 3. 3.

Blob Tracking—see section 4, Tracking algorithm 1s decomposed in the tollowing steps:

1) Prediction: Each prediction method is employed to 1dentity the most likely location
of the appropriate observation in the current frame.

Method A A Constant Acceleration ¢ —f Tracker—see section 4, 2.

Method B Region Segmentation and Matching—see section 4. 3.

Method C Constant Velocity Kalman Tracker—see section 5.

2) Matching: Each of these prediction schemes returns 1) a blob representing the best
match from the sct of moving regions in the current image, and 11) an estimate of the posi-
tion of the current blob, The best is evaluated using a cross-correlation method comparing
pixels from the previous and current moving regions—see 4. 1,

3) Updating: The motion models are updated using the locations of the returned ob-
servations,

Creating New Objects Detection and creation of the new tracks tor the new blobs in the
scene which have not been matched to any previous blob.

2 Related work

In most systems the lirst step in tracking objects 1s to separate the foreground from
the background or to detect motion i, e. to detect the regions (apparent shape) of inde-
pendently moving objects regardless of their speed, direction or texture, The majority of
the established trameworks track objects against a background captured from a single and
stationary CCD camera with fixed tocal length, as in this study. We build a background
reference image using a mixture of Gaussian models. Then the foreground objects are seg-
mented from the background reference image by using a simple thresholding method on a
luminance contrast criteria. The implementation of the foreground object segmentation is
presented in more details in section 3.

Most of the tracking methods that use pixel-differencing employ either a mixture of
Gausstan models or a Kalman filtering method to model the background scene. Stauffer
and Grimson Y have introduced the concept of multi-Gaussian mixture model and it is
widely used, e. g. """, The approach uses EM (Expectation Maximisation) to fit a Gauss-
1an mixture model etticiently to each incoming pixel stream algorithm to determine which
mixture model 1s the most likely to result from the background process. Each pixel is clas-
sified based on whether the Gaussian distribution which represents it most effectively is
considered part of the background model. This technique has for example been very suc-
cessful in vehicle identification and tracking” in which tracking has been facilitated by the
fact that the pixels of foreground objects are modelled as the weighted sum of three select-

ed distributions: the road. shadows and vehicle. The other major technique to model the
background image is the Kalman filtering based method'®. As in the mixture model meth-
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od technique, the Kalman filtering technique will also adapt to the changing illumination
occurring 1n the background. An interesting alternative way to estimate the background is
presented in | 7 ] where Robust Statistical filters model the background pixels. The ap-
proach 1s using L-filters (i. e. a linear combination of the ordered samples of the image se-
quence).

The Tracker module 1s implemented within a hypothesize, validate and update frame-
work—see Figure 1. Each active scene Object has an assoctated Trajectory Model which
describes the current position, velocity and possibly acceleration of the object in image co-
ordinates, (An alternative ground plane space may be a more appropriate space within
which to track'*! ). In addition, each Object has an associated Appearance Model which
may be used to identity those blobs with the most similar shape and/or chromatic struc-
ture, Such appearance models may simply describe the expected width and height of the
object’'s bounding box, or record the pixel grevlevels within the last bounding box. More
sophisticated models may record the contour® , binary pixel shape'®!%, or spatio-chromat-
ic structure''"'*), More dynamic variants of the appearance model may simply describe the
rate of change of these bounding box dimensions'*''*! while active or statistical appearance
models may attempt to learn the allowable variation in object appearance '*''®!. In the hy-
pothesis phase of the procedure, the object position and appearance are predicted from the
Trajectory and Appearance models. Each active scene object 1s then validated by locating
an appropriate corresponding observation from the list of candidate observations—Data
Association '’ Greedy matching is a common local approach to establishing correspon-
dences 1n which the observation closest (using the Mahalanobis distance metric) to the
predicted position of an object 1s selected. In addition to incorporating appearance informa-
tion, more sophisticated global approaches attempt to enforce the uniqueness constraint by
considering all possible object-observation pairingst®'*!, Unmatched observations may be
used to hypothesise new objects appearing within the scene. In the update phase, the posi-
tion and appearance of each corresponding observation are used to update the trajectory and
appearance model ot validated scene objects. Typical update mechanisms include the a —§

tilter and the Kalman filter. Fundamentally, the tracker maintains the temporal coherence
of object identities.

—
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Fig.1 Tracking architecture

For a tracking algorithm to be successtful, it has to be robust in all scenarios, inclu-
ding the spectfic case of occlusion. All existing trackers can only cope with moderate levels
of occlusion, and most of them cannot cope well when moving objects leave the group of
merging objects in different directions in which they entered. The longer an object merges
into a group, the more difficult it is to be tracked. Some system can have additional con-
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straint by assuming for example to have the objects moving on a ground plane only; enab-
ling a depth ordering and a better estimation of the tracks. While the use of Appearance
Models such as shape or chromatic texture models are vital to establish temporal coherence
of object identity, robust real time implementations are not currently available for even the
typically high-specification computing platforms used in visual surveillance research.

Sometimes the tracking of objects through inter-irame correspondence of features breaks
down, because of signiticant shape leature variations or duc to occlusion of objects by one
another. Different solutions to the occlusion problem in tracking have been proposed. Ro-
sales and Sclaroff!! for example use Kalman filter, Khan and Shah-*"! segment object into

similar colour classes and Colins er a/. use the normalised colour histogram of each ob-
[21]

‘} —I|

jectst? . In Anzalone and Machi two combined methods are applied*® (the first method u-
ses a mixed parametric and fuzzy logic approach to compute distances among objects 1n the
features space and to assign to each association and affinity index. The second method is
based on a Kalman f{ilter approach). Recently, Haritaoglu e al. implemented a real-time
human-tracking system and suggestced using a multi-camera system to analyse the occlu-
sions'“ . In here single static camera are used and several methods are combined altogether
to predict the best estimate, These techniques compose of grey level segmentation, geome-
try match and a simple Kalman filter. Where implemented occlusion reasoning stages can
consider the longer term history ot each track to appropriately introduce merge and split

operations and re-establish correspondence caused by occlusion or fragmentation'?/.

3 Segmenting moving regions

In most systems the first step 1n tracking objects 1s to separate the foreground from
the background or to detect motion. This means to detect the regions (apparent shape) of
independently moving objects regardless ol their speed. direction or texture. Moving ob-
jects are assumed to occlude a background captured [rom a single and stationary CCD cam-

era with fixed focal length. In common with most current implementations, we build a
background reference image using a mixture of Gaussian models ' . Foreground objects are
then segmented from the background reference image by using a simple thresholding meth-
od on a luminance contrast criteria.

3.1 Building a reference image

Stauffer and Grimson"!

model the values of each pixel as a mixture of a (Gaussian.
Based on the persistence and the variance of each of the Gaussians of the mixture. they de-
termine which Gaussians may correspond to the background grey level. Pixel values that
do not Iit the background distributions are considered foreground until there is a Gaussian
that includes them with sufficient, consistent evidence supporting it.

The system adapts to deal robustly with lighting changes, repetitive motions of scene
elements, tracking through cluttered regions, slow moving objects, and introducing or re-
moving objects from the scene. Slowly moving objects take longer to be incorporated into
the background. Also, repetitive variations are learned, and a model of the background
distribution 1s generally maintained even 1t 1t is temporarily replaced by another distribu-
tion which leads to faster recovery when objects are removed. This method requires two
significant parameters: the learning constant and the proportion of the data that should be
accounted for the background.

If each pixel resulted from a particular surface under particular lighting, a single
Gaussian would be sufficient to model the pixel value while accounting for acquisition
noise. And if only lighting changed over time, also a single, adaptive Gaussian per pixel
would be sufficient. In practice, as previously explained, multiple surfaces often appear in
the view of a particular pixel and the lighting conditions change. Thus, multiple, adaptive
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(Gausslans are necessary——typically 5.
3.2 Foreground pixel detection

New moving objects are located by comparing each new frame against a reference im-
age that contains only stationary objects. Foreground pixels detection is achieved in this
project by using a luminance contrast measurement-?"’. Luminance contrast is an important
magnitude in psychophysics and the central point in the definition of the visibility of a par-
ticular object. Typically, luminance contrast, C, is defined as the relative difference be-
tween object luminance, I,, and local background luminance, I,.

. o~ 1.Gyg)—I,(1,5)
C(i,j) LG

where (7, j) 1s the pixel location in the image
plane., Values of [uminance around O are expected
for background pixels while negative and positive
values are expected to occur at foreground pixels
with brighter and darker intensities respectively.
A threshold is used to either classify the pixels as
foreground or background. An empirical value of
the order of 0. 15~0. 20 is chosen: if the absolute
value of the luminance contrast is greater than this
threshold then the pixels are labelled as foreground
pixel, else as background. An example of fore-
ground/background objects pixels are shown in
Figure 2.
3.3 Extracting moving regions

Atter all pixels have been flagged as either
foreground or background from the foreground de-
tection module, the region finding module proces-
ses them in order to create blobs of the foreground
objects. The task of separating foreground pixels
into different blobs 1s achieved using a projected

— histogram method on the current foreground da-

Fig. 2 Detected loreground pixels tal?!, The algorithm searches along the histogram
all the possible spatial segments where group of {oregrounds exist, where each segment
create a blob area as shown in Figure 3. This procedure of histogram followed by blob tor-
mation is firstly achieved on the horizontal axis on one single area, the frame formed by
the whole image. Once a first set of blobs i1s created the same procedure 1s repeated on the
vertical axis and on each blob area delimited in the previous procedure. This will lead to a
more detailed blobs segmentation. Finally for more accuracy and to segment each possible
group of foreground pixel into blobs, an

(1)

L . _ | Height
additional horizontal and vertical histo- |
gram tormation is achieved on each upda- | backgroud pixels I foreground frame flui
ted blob areas. In order 1o reduce false | ~Initial blob frame

foreground object segmentation, each
blob should contain at least 30% of fore- |
ground pixels and the bounding box B

‘Lﬁnal blob frame

| ~foreground pixelx

—1Width

should have a height and width of mini-
mum pixels, of the order of 5. Examples
of segmented blobs in metro scenes are

shown in Figure 4. Fig. 3 Finding blob trames

_. 1stprojected
histogram
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Fig. 4 Detected foreground blobs

4 Blob tracking

The general aim of a tracking algorithm i1s to establish the temporal history of an ob-
ject with reference to the set of feature observations (7. ¢. blobs) extracted from the image
sequence over time——ideally {from the moment each blob appears in the scene until it dis-
appears. The most significant challenge to this otherwise successiul approach 1s the fre-
quent problem of occlusion and tragmentation where the shape, dimensions and colour sig-
nature of the merged or fragmented observations do not correlate well with the actual ob-
ject observation.
4.1 Occlusion reasoning

The tracking algorithm developed here tracks the blobs between two successive
frames by detecting the overlapping bounding boxes between the new untracked detected
blobs, given by the current frame, and the predicted objects from previous frame. Many
scenarios can occur: one blob occluded by another, merging of many blobs into a single
one, blob disappearance (due to occlusion by background objects or simply due to {ore-
ground detection failure). In this tracking algorithm the following rules have been chosen:

Correspondence between predicted object position and candidate blob trom current im-
age is signalled by overlap of bounding boxes.

Ambiguity I{ a predicted biob simultaneously intersects with two current blobs then
the current blob with the largest intersection area will be considered as the best candidate,

Occlusion If the bounding boxes of several predicted objects overlap one single current
blob then the blob 1s assigned to object which returns the best correlation match—see below,

Match Testing To assess the quality of a match, the pixels within the bounding box of
the previous blob 1s projected into the current image and compared with the corresponding
pixels in the current image using a squared error measure. Alternate predictions are differ-

entiated by seeking the most similar match and hence yield the minimum squared error.
Static Occlusion If a predicted object intersects no candidate blobs from the current
frame and 1s predicted to remain with the image, the object 1s considered to be temporally
occluded by some static object e, g. a car, sign, ete, (It i1s also common in situations
where the pixel intensities of the predicted object are very similar to the background. Such
situations may be eflectively diiferentiated using a pre-learnt semantic landscape of the

scene-

—though this has not been implemented 1n this work. ) In such static occlusion ca-
ses the object 1s continuously predicted until either i1t is located, exceeded an unvalidated
TTL, or is expected to have left the scene.

Initialisation After attempting to match all the previous blobs with the new current
blobs, 1 a current blob remains un-matched with a previous blob then this new blob 1s
simply considered as a new appearing object.

4.2 Method A—trajectory prediction using o« — /3 with constant acceleration model

Each moving object usually follows a certain trajectory which means that studying all

of the positions of a tracked objects with time could allow us to predict relatively accurate-

ly where this object would be situated in the current new frame. In this study we consider
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that each object is expected to have an acceleration of the order of the previous acceleration
computed i. e. constant acceleration, If the trajectory and the dynamic of each moving ob-
ject were smoothly varying then a constant acceleration model would be satisfactory (it
wouldn't be necessary to update the acceleration term every frame). Nonetheless accelera-
tion needs to adapt though regularised by the previously computed acceleration.

The prediction from the previous blob into the new frame is required to locate the ap-
propriate new blob observation irom the candidate list of new blobs extracted from the cur-
rent image. Consequently a predicted velocity vector is also needed. Considering an inter-
frame time of unity, A#=1 and a constant acceleration model, we obtain the predicted ac-
celeration term d,—a,_, which in turn gives us then the predicted velocity 9,=a,+v,—,.

This predicted velocity allows the prediction of where approximately the blob situates
in the new frame. Once 1t has matched with a new blob (if it does), this new blob reposi-
tions the now tracked blob by its new position x,, giving hence the updated new observed
velocity v, =x, — x,—, and the new regularised acceleration term is.

a = a(v, —v_) + (1l —a) a_, (2)
v, = alx, —x,,) + (1l —a)v,

A choice of the regularising factor ¢ of (2) makes the model independent of the previ-
ous acceleration results while a choice of 0 would make the model totally dependent on the
previous result as this will represent the case of constant acceleration model. A choice ot
50% for a« has been chosen.

4.3 Method B-segmentation tracking

When several separate objects merge under occlusion to create a single blob then the
problem ol separating those object within the occluding box arises. There have been many
attempts to resolve this problem. The simplest method is assume the occluding object will
subsequently split and to simply wait for the merged blob to split. In the meantime the
tracker suppresses the validation and update stage and blindly continues to predict the like-
ly object position in each subsequent frame. Even where 2D height and width dimensions
are stable, such an approach is obviously dependent on the occluding objects having dis-
tinct and unchanged motion trajectories—a risky

strategy where visually adjacent objects are otten
adjacent in the real world. Neither ¢—g filters nor
Kalman trackers are immune to this problem. The
approach here relies on a more sophisticated ap-
pearance model which 1s matched between views.
More specifically, as this appearance model is built
from spatially distinct object features, it i1s likely
that some inter-frame matching 1s possible during

the occlusion process itsell,

The i and ;” blobs in the previous and cur-
rent frames are denoted by B!, and B! respective-
ly. A region segmentation algorithm divides the
these previous and current blob features into um-
form texture regions, Ri_ |, =] 7Y, yf\ri_] and R’
=[vy’l,.-, ¥4 | respectively. Each region ¥ is re-
presented by two values: its mean intensity y, and

its standard deviation term g,. An iterattve grass
fire-based region segmentation technique 1s de-
ployed to extract uniform textured regions. Typi-
Fig.5 Region segmentation cal results are 1llustrated in Figure 5.
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Once the segmentation process 1s achieved, a match error functional E(y,, v,) which
measures the dissimilarity between regions 1s performed lor every pair ol previous and cur-
rent region features between R,_, and R/. The match algorithm selects the current greylev-

el region ¥, which returns the minimum match error. A region is said to be similar to an-

other if both have similar mean and standard deviation values. Thus the error functional 1s
defined as follows;

E(es vi) = wE, (Vs +w,E, (yi sy (3)
where - mun(pe s pe ) - min(o ; s0 ,)
E.(ri,yl) =1— ——;  E.(yy.7D) = 1— S
max(p.y; e, ) max(aﬂ_ 0, )

Region Matching Algorithm

The region matching algorithm operates on
the sets of previous and current blobs { B ;;
Vi) and {B/; V) respectively., Figure 6 illus-
trates the result between a pair of typical blobs

extracted using the algorithm described below.

For each predicted object: B; |

» Retrieve the regions [ 71, *=-.yx | of pre-
dicted blob 7 (segmented in previous cycle).

* Predict location of corresponding current
blob, and recover each current blob overlapping
the predicted blob.

For each current overlapping blob B’

1) Segment the corresponding current

blob B’ into its regions [y}, .,}fﬁj]

2) Perform a greedy search using equa-
tion (3), select the match (y* y/)
with minimum match crror over all
match pairs (y,.y;1) € B, X B/,

« If minimum functional value of this best

..............

match is greater than some validation threshold. Fig. 6 Matching results

object is assumed to be totally occluded.
Finally., the predicted velocity for blob B, |, from this scheme i1s computed as the vec-
tor separating the centroids of the best match regions y', 7’.

5 Kalman tracking

The Kalman filtering method relies on two main equations: an equation on the state

[25]

process and another on the measurement process-“>-. Once estimated, the state parameters

are updated and fed forward for the next iteration phase of the filtering. Each iteration in-
volves 4 steps to be performed along which predictions are done and matrices are updated
betore jumping to the next iteration.

Xpr1 = Dpx, + W, (4)
where x 1s of dimension N, @, 1s the N X N state transition matrix that relates the states of
the process at time £ and £+ 1. and w, 1s the noise vector associated with the process model
between time 4 and £+ 1.

The second observation equation governing the Kalman filters is the equation that lin-

early relates the measurements (the observations) to the state vector:
Lp — H,%x;g—l—v,& (5)

where z, 1s the M dimensional noisy and distorted observation vector at time k, v, 1s an M



364 ACTA AUTOMATICA SINICA Vol. 29

dimensional noise model vector and H, is an M X N dimenstonal square matrix relating the
state and measurement parameters in a nON NOISY Process.

The two noise processes w, and v, associated with the state and measurement equa-
tions respectively, are assumed to be white uncorrelated noise and independent of each oth-
er, hence we can write

Elww,]=Q., Elwwv;] =R, (6)
After further development, the method to implement the Kalman equations 1s described in
the four following steps-?!’.

Step. 1  State and Observation Prediction

X, = Opx, (7)
P, = O, P @ +Q (3)
2, = Hux, (9)
Z; :Hk P; HI (10>

where x; , P, are the predicted uncertain states, and z, ,» Z:. are the uncertain locations of
the predicted observation. For system noise QQ,, see section 5. 2.

Step. 2 Recovery of Observation

The appropriate new observation z, and uncertainty R, must be identified. In clut-
tered scenes a Greedy Search algorithm typically selects the closest observation using the
Mahalanobis distance based on predicted and observation uncertainty. In our algorithm it
is 1dentified by a correlation process described in section 4. 1.

Step. 3 Compute Kalman Gain

Ki=P, H,(Z, + R, (11)

H, remains constant throughout the Kalman filtering process. At time #=0, we need to
have a prior estimate of P, in order to start the system. It i1s often estimated from the co-
variance of the first observation. In our study, the first P was replaced by a scaled identity

matrix. For details on R. implementation, see section 5. 2.
Step. 4 Kalman Update

xi = x; + K, (2 — z) (12)
The term z, —z, represents the error between actual and predicted observation.

The covariances P, represents the new current uncertainty in the updated state vector,
while I 1s the identity matrix and K, the Kalman Gain.
5.1 Method C-constant velocity Kalman Tracker

The Kalman {iltering process implemented 1n this study is based on the Kalman phases
described above. The computational time required to perform a Kalman filtering system
depends directly on the size of the state and measurement vectors, x and z respectively.
More precisely, it depends on the time required to make a matrix inversion operation in the
first step (see Equation (11)). And the time required to perform a matrix inversion opera-
tion increases exponentially, this places a real time constraint on the choice in the vector
models. As the overall tracking algorithm involves many sub-algorithms, like background
estimation, foreground detection and segmentation, the state and measurement vectors
have been chosen to be of the simplest form: z contains only the foreground object posi-
tions and x will involve both position and velocity of the blobs.

20 = L2y 3]’ (14)

X, == | Xy Urk Vb 'U:.u.k]T
From here., the matrixes & and H of equations (4) and (5) respectively can be con-
structed as follows:
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1 Ar O 0°
§ 1 O O
P — 0 0 1 As (15)
o O 0O 1._
-1 0 O O
H = 0 0 1 o (16)

5.2 Determining the noise processes

The determination of the process noise covariance @ is difficult to estimated as there is
no ability to observe and measure directly the process. Sometimes a relatively simple
process model (as assumed in this study) could produce acceptable results if there 1s e-
nough uncertainty into the process via the selection of Q. Moreover, Q 1s the parameter
which controls the adaptation capacity of the algorithm to adapt its tracking to noisy meas-
urements. In other words, Q fixes the fluctuation of the coefficients of the filter. A choice
of Q=0. 33I has been chosen empircally and is satisfying for all tracking scenarios.

The component K, of the covariance matrix of equation (6) represents the uncertainty
on the measurement which 1s in this study the position of the centroid of the foreground
objects. Estimation ot R; will depend on the accuracy of the foreground detection method.
In this work R. is estimated based on the second order shape matrices of the region—the
scatter matrix. In this study this scatter measure 1s computed and a more realistic centroid
uncertainty derived from the scaled Scatter matrix. The Scatter matrix S of a region is de-
fined as follows:

S = Jifz[u;;~—3.?:H>(x£——j'E,-M>"‘] (17)
where N is the number of pixels in the region, and the centroid x, = (y, , u,)" is defined as
1 1

e = NZ N S N Zy (18)

and {x;,=(x;,y;)"; 1<i=<C{N} are the locations of pixels within the moving region.

The estimation of the two noise processes using the Q and R parameters has been sat-
isfactory for the tracker to be robust and reliable in most of the situations. However, in
the cases where the object motion is not well modelled by the constant velocity motion
model, the filter can easily loose the track 7. e. the predicted object locations deviate signif-
icantly from observations. Consequently a tading factor 5, has been introduced 1n order to
enable the filter to adapt'
tainty which in turn increases the Kalman Gain. This fading factor depends on the differ-
ence of the magnitudes of the velocity between two iterations 1. e.

/A log ( H Vi — Vi H ) + 10 (19)
where v 1s extracted {from the state vector defined in equation (14).

! which is multiplied to the matrix P, to increase the state uncer-

6 Results

In this section, we will evaluate tracking periormance on four ditficult image se-
quences contalning one or more occlusion events. Each image sequence is illustrated by six
frames 1n Figures 7, 8, 9 and 10 whose sizes are 192X 144, 381 X288, 288 X216 and 152X144
respectively. Sequences 1, 3 and 4 are taken from cameras placed in public transport sys-
tems while Sequence 2 consists of an outdoor sequence taken from the PETS" database.

In Figures 7 to 10 the results of the hybrid tracking Method ABC are displayed for
each of the selected frames. Each tracked object 1s assigned a unique colour. The method
relies on the three independent algorithms. Each predicts the location of the observation

1} visualsurveillance. org
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and the one which gives the minimal correlation error is assigned to the tracker.

Since we are only interested in evaluating the tracking performance i. e. assignment of
consistent labels over time) in the case of occlusions, the accuracy of the bounding boxes
positions 1s not assessed—only the accuracy of the labelling. The evaluation methodology
for accessing the accuracy of labelling counts the number of times N, an object 7 has been
assigned the correct label relative to the number of times that object is in the view volume
N;. For each sequence S, labelling accuracy for each method can be computed as

D.i

for each object i in sequence S

Accuracys =

for each ahject | in sequence S

Fig. 7 Sequence 1

e

Fig. 9 Sequence 3 | Fig. 10 Sequence 4
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Table 1 presents the accuracy of the three methods A, B and C run independently a-
gainst the accuracy of the hybrid ABC.

Table 1  Accuracy of methods
Accuracy (%)

Method
Seq. 1 Seq. 2 Seq, 3 Seq. 4
A 94 82 21 60
B 3 32 2 90
C 92 90 10 40
ABC 98 89 24 68

Sequence 1 presents multiple small and dark objects of pedestrians occluding each oth-
er while walking with a relatively small 2D plane speed and with a relatively constant accel-
eration, making it difficult for Method B to segment distinct textures. On the another
hand Methods A and C very successful. Sequence 2 contains very similar occlusion scenari-
0s as Sequence 1 except that some objects like cars are big enough to allow Method B to
make a contribution. Sequence 4 differs from Sequences 1 and 2 in the fact that the objects
appear very quickly in the view with high velocities, making method C hard to adapt and
Method A inaccurate. On another hand, this sequence has been made up of similar objects
for the whole sequence. Those objects have been selected big enough with non-distinctive
textures to show that Method C can overcome occlusion issues when other methods fail.
Finally Sequence 3 presents two people simulating a fight, where their velocities, shapes
and appearances are changing constantly for the whole sequence. Consequently both mo-
tion model methods cause mistrack or simply fail to track all present objects in the scene.

7 Conclusion

An investigation of the 1ssues encountered i1n all occlusion scenarios 1s presented here.
Numerous tracking algorithm use motion models of different complexity hoping that the
objects will behave according to a predicted model. Two have been implemented here.
However, despite the predictive accuracy ol the two motion model based tracking
schemes, they cannot deal with all situations. To support these traditional approaches, we
have implemented an appearance-model based technique which decomposes the moving re-
gion (or blob) into homogeneous greylevel regions, and matches these between frames.
Three simple and quick algorithms have been combined together to maximise the robust-
ness in the face of complex occlusion scenarios. Although, the results presented cannot
cope with all scenarios, a better handling of the occlusion process has been achieved.

Future work will address a better segmentation process particularly where there is a
very high level of contrast between object and background, and the improvement of motion
model. In addition, a greater level of object localisation would be desirable using an im-
proved foreground detection scheme which include with shadow detection and removal.
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