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Stability Analysis of Generalized Predictive Control with
Input Nonlinearity Based-on Popov's Theorem"
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Abstract Ior systems with input saturation constraint and invertible static input nonlinearity, a
two step generalized predictive control (TSGPC) strategy is adopted. An intermediate variable re-
presenting the desired control action is obtained by applying linear GPC (LGPC), then the inverti-
ble static nonlinearity is compensated by solving nonlinear algebraic equation (NAE) and the input
saturation constraint is satisfied by desaturation, TSGPC has low computational burden and is es-
pecially suitable for fast control application. The closed-loop block diagram of this system is
turned into a static nonlinear feedback form, and Popov's theorem is applied to the closed-loop sta-
bility analysis. The sufficient stability conditions are obtained. Effective algorithms for determi-
ning controller parameters are given to make the stability conclusions applicable and an example is
given for illustration.
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1 Introduction

Input nonlinearity includes input saturation, deadzone, relay cycle, etc, Moreover, sys-
tems represented by Hammerstein model are often met as input nonlinear system. [ 1~4 |
utilize the two-step control scheme for Hammerstein nonlinear systems with “polynomial
+CARIMA?” model. They first obtain intermediate variable through LGPC, and then ob-
tain the control action by solving NAE. Moreover, desaturation is often applied to systems
with input saturation, which is a special form of two-step control scheme. Desaturation is
espectally favored {or fast control, and can save time in adaptive case. The TSGPC studied
in this paper is shown in Figure 1, which deals with both Hammerstein nonlinearity and
input saturation, and utilizes both NAE and desaturation. In a word, the advantage of TS-
GPC is that it designs a controller within the scope of linear systems, so it is much simpler
than the scheme that solves the nonlinear control problem with nonlinear system model
and/or nonlinear objective function®, If the desired intermediate variable is precisely im-
plemented by actual control action, the etfect ot middle three blocks in Figure 1 disappears
and the stability could be designed by LGPC. But this ideal case can not be generally guar-
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Fig.1 Schematic structure of TSGPC for constrained Hammerstein model

x.:desired intermediate variable; x:intermediate variable; w.input; vy:output
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anteed. The control action may be saturated, and the solution of NAE may have error. In
all these cases, the stability analysis of TSGPC becomes difficult, to which there isn't
clear conclusion.

In this paper, the original closed-loop block diagram ot TSGPC is turned into an e-
quivalent static nonlinear feedback form. This shows that the stability of TSGPC can be
deduced from Popov's theorem. So a stability conclusion could be obtained, which does
not need the stability of linear control law and can serve as guidance to the parameter de-

sign 1n 1SGPC,

2 The description of TSGPC

The invertible static nonlinearity is represented by x(z) = f(u(t)) where £(0)=0 and
the CARIMA (controlled auto regressive integrated moving average) model is represented
by

a(z " )y(t) = bz Dxt— 1) +@)/A, A=1—zg" (1)
where 27! is the backward shift operator; &(¢) is the white noise with zero mean value:
Aalz" )=Al+az't+eta,z™)=14+a,2 ' Feo+a,2™ " and b(27) =06, +
byz™ ' et by, with a,. 70 and 6,,7%0; (a,b) are irreducible pair. The input con-
straint is | «(2) | <U.

TSGPC tirstly obtains the desired intermediate variable by applying LGPC to Equa-
tion(1l), adopting the following objective function.

J () = ny(t-(“i)—w]z—i*ZAAI (t+j—1) (2)

where  1s the set-point. The follc:rwmg two Dlophantme equations are introduced into LGPC.
|l =EaA+=27F,, G =Eb=0C,+z2YVH, (3)
where E;=e¢, te,z ' Feetez VY Fi=f o+ fiz i et fioue ™G =g +g.z F
ctgix VTV and H, =h 2 thaz f e b2 ™V Define H=[Hy » Hy 414
Hy, ' s F=[Fyn sFy 415 Fy, 1" s M=[1,1,+,1]" and d"=[1,0,--,0 QI+ G"G) ' G",

-

E N1 EN1I—1 BN~ Nut1
1 8 N1+ E N1 “** EN1—Nut2 : L .
where G = : : : . with g, =0 tor all ;<< 0. The control law of
- 8 N2 EN2—1 " BN2—Nutl_

ILLGPC is Ax(t)*dT (&—f) where &= Cwrwssw ", while fis composed of the past in-
termediate variable, past output and current output'®.

The second step of TSGPC is to obtain the real control action u(¢) from x. (t)=x. (¢t— 1)+
Ax(t) by one of the following two approaches.

Approach A. Solve NAE f(i(t)) —x.(¢)=0 tor (), which is formalized as @ () =
™' (x.(2)). Then u(¢) is obtained by desaturation: u () =sat {i1(2)}, where sat {v)=
sign{v)min{ |v|,U}, and this is formalized as u(z)= " (2. (¢) ). Approach A is of low
computational burden, but f(&(z)) —x,(¢) =0 may have no real-valued solution''™", If f
1s non-monotonic and the system has an inherent static error, approach A may be unable to
achieve the smallest static error*'. If f is an odd-ordered monotonic polynomial, approach
A 1s preferable,

Approach B, Transform input constraint into the constraint on (), i e., x,. <<

r/‘I‘min * Ic(t)gxmin
T LT max. et T =<2, (1) 3  Tpin <X (1) < Zpax. Solve NAE f(u(t))—z() =0 to obh-
(A max v op ('t) Exmax

tain u(#)=f ' (F(2)), also formalized as u(z)=F"! (x.(¢t)). By Approach B the NAE al-

ways has a real-valued solution and the smallest static error can be achieved.
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Figure 2 is the block diagram of TSGPC*! with notations above, where “plant” repre-
sents the real system. Assume the real static nonlinearity is f,, then TSGPC is equivalent
to LGPC if and only if f,=f"'. However, it is difficult to achieve f,=7F if fo5% f and/or
f#f. Actually, it is generally impossible to achieve f,=f. It is the aim of this paper to
study the closed-loop stability of TSGPC in the case f, % f. As f ' has incorporated de-
saturation computation, the nonlinear item in the closed-loop system of TSGPC becomes
fof~'. Since the uncertainty in f and the nonlinearity of the actuator'’”! can be incorporat-
ed into f,, the stability result for TSGPC is also the robustness result of this kind of system.

J

Fig. 2 The original block diagram of TSGPC

3 Applying Popov's theorem to TSGPC
3.1 The stability conclusion

Lemma 1 (Popov' s Theorem). Suppose 0 E;(z) A
that G(2) in Figure 3 1s stable and 0<C@(§) < T L
K@°. Then the closed-loop system is stable tf 1/ — _‘i |
K+Re{G(2)} >0 for all |z| =1. -

Applying LLemma 1 we can obtain the {ol- Fig.3 The static nonlinear feedback form, 1
lowing stability result of TSGPC.

Theorem 1. Suppose that the linear part of the model is accurate and there exist two
positive constants &, and k. such that 1) the roots of a(1+d"H)A+ (1+k, )z 'd" Fb =0 are
all located in the unit circle; and i)

1 , 2 d' Fb -
ok TR dmat A rera w0 ViEl=] (4
Then the closed-loop system of TSGPC is stable if the nonlinear item satisfies
k10°<C (fof T — 1) (0)8 < k.07 (5)

Proof. Assume, without loss of generality, that =0 in Figure 2. Transtorm Figure
2 into Figures 4 (a), (b) and (¢). Assume that the feedback item f, f~ ! —1 in Figure 4(c)

L dTM l ¥ 1 If(.’f) ]Pul »[fﬂ _f?-if)
(1+d"H)A

-I —d'F (e z“lb/aJ‘

(a) Block diagram with zx as the output

0 T — 13T R} z,(¢) 2 'd Fb z (¢
— ad M —»@—» z 4 F | > -—-{}—-—lr@—r = — ————
2~ 1dTFb a(1+dTH)A B a(l+d ' H)A+z7'd* Fb
A d
fe.f?q'l"‘ ft:fWI'_l"""L T
|
(b) The static nonlinear feedback form 2 (¢) The static nonhinear feedback torm 3

Fig.4 The block diagram transformation
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satisfies 2,0 < (fo f ' —1) (0)O<k,0% where k, and &, are constants. For utilizing Lemma
1, take 0T ()<< (ks — k1 )0* = kO where (@)= (fo f'—1—k;)(® and transform Fig-

ure 4(c) into Figure 5. Now, the characteristic equation of the linear part becomes a(1+

d"H)A+(1+Fk) 2 'd"Fb=0. Therefore, the theorem holds by Lemma 1.

0 2 1 dVFb x (&)
§ a(l-l-dTH)ﬂ—F(l—!-k])z_]dTFb

'(,D"‘

Fig.5 The static nonlinear feedback form,4

Remark 1. For given A, N, , N, and N,, we may find multiple sets of (%&,,%;) such
that for all £, € [k, ,k; |, the roots of a(1+d ' H)A+ (1+Fk, )z 'd' Fb=0 are all located in
the unit circle. In this way, the number of sets (&, ,k;) satisfying [ £, .k, | <[ ko %5 | and
the conditions 1) ,11) in Theorem 1 may be innumerable. Suppose that in the real system

R10°<< (fof '—1)(6)8 < k307 (6)
where %] and £; are positive constants. Then Theorem 1 means: given A.N; N, and N, , if
any set of (k,,k;) satisfies [ ki ,k; |=2[ k] k5 |, then TSGPC is stable. In fact, with Equa-
tion (6) known, verifying the stability can directly apply the following conclusion.

Corollary 1. Suppose that the linear part ot the model is accurate and the nonlinear i-
tem satisfies Equation (6); then under the following two conditions the closed-loop system
of TSGPC will be stable.

1) all the roots of a(1+d " H)A+ (1+-) 2 'dTFb=0 are located in the unit circle,

; 1 T \
i L 1 Re. z_d 1o ~0, Vlz|=1 (7)

kS — kS a(l+d"HHDA+ 1+ kD2 'd ' Fb

Remark 2. Theorem 1 and Corollary 1 do not require the corresponding LGPC to be
stable, i. e. , they do not require all the roots of a(1+d H>A+z 'd'Fb =0 to locate in the
unit circle. This 1s an advantage of the stability result in this paper. Considering the rela-
tionship between TSGPC and LGPC shown in Figures 1 and 2, 0& [ £} ,%5 | will have many
advantages, but this means that the corresponding LGPC is stable.
3.2 Two algorithms for finding controller parameters

Theorem 1 and Corollary 1 can also be applied to design of the controller parameters
AsN;sN,; and N, to stabilize the system. In the following we discuss two cases in the form
of algorithm.

Algorithm 1. Given (k5 ,k)), design parameters {A,N;,N,,N,} to stabilize the sys-

tem.

Step 1. Search N, ,N,,N, and A by variable alternation method, within their permis-
sible (with respect to computational burden, etc. ) ranges. If the search is finished, then
terminate the whole algorithm, else choose one set of {A,N;,N,,N,} and determine
a(l+d " H)A+=z"'d" Fb.

Step 2. Apply Jury's criterion to examine whether all roots of a(1+d"H)A+ (1+k)) -
2 'd"Fb=0 are located in the unit circle. If not, then go to step 1.

Step 3. Transform —z 'd"Fb/[a(1+d"H)A+ (1 +Ek)z 'd" Fb ] into irreducible z-
polynomial, G(k},2).

Step 4. Substitute e=0¢+ /1 —¢°¢ into G(&},2) to obtain Re {G(E},2) )} =Gr (k) ,0).

Step 5. Let M= max Ggr(k],o). I ky<CAA 1
o[ —1,1] M

If the open-loop system has no eigenvalues outside of the unit circle, generally Algo-
rithm 1 can obtain satisfactory {A,N;,N,,N,}. Otherwise, satistactory {A,N,;,, N3z, N, }

, then terminate, else go to step 1.
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may not be found for all given (%},%k3). In case no satisfactory {A,N;,N,,N,} has been
found by Algorithm 1, we can restrict the desaturation level, 1. e. , try to increase k] (this
will be clear in Section 3. 3). The following algorithm can be used to determine a smallest #7.

Algorithm 2. Given desired (%),k5), determine the controller parameters {1, N, , N, ,
N.} such that (&}, ,k3) satisfies stability requirements and kY, —%} 1s minimized.

Step 1. First let B =k,

Step 2. Same as step 1 in Algorithm 1.

Step 3. Utilize root locus or Jury's criterion to decide (ky,k;) such that [ ky,k; | D
[ £5:° yk5 | and all roots of a(1+d " H)A+(1+k, Dz "d" Fh=0 are located in the unit cir-
cle, for all kb, &€ [ kyyky |. It such (&y,k5) does not exist, then go to step?2.

Step 4. Search ki, by increasing it gradually. If the search is finished, then go to step2,

else take £}, € [ max{ko k] } .21t | and transform —z 'd'Fb/|a(1+d H)A+(1+k},) *
2 'd" Fb | into irreducible zﬁpolynomlal, GCRY 5 2).

Step 5. Substitute z=g+ +/1—¢"7 into G(£$, ,2) to obtain Re{G(k), ,2) } =G (B s0).

Step 6. Let M= max Ggr(k},,0). If By<kj, L
e[ —1,1] M

and go to step 2, else go to step 4.

Step 7. On finishing the search, let ki, =A3;"“.

Simulation studies show that most Searchmg tasks can be terminated in a few minutes
by applying the above two algorithms.
3.3 The determination of (k}.k3) for a real system

In the above, given (kj,k5), we described the algorithms for determining the control-
ler parameters. In the following we briefly illustrate how to decide (%5 ,£%) so as to bring
Theorem 1 and Corollary 1 into play. From the above discussion we know that f, f !##1
may be due to the following reasons:

1) desaturation effect;

11) solution error of the NAE, including the case where an approximate solution ts
given since no accurate real-valued solution ex1stsm

111) maccuracy in modeling of the invertible static nonlinearity;

iv) execution error of the actuator in a real system.

Assume the second step in TSGPC adopts Approach B. Then f, f~! is shown in Fig-
ure 6. Further assume that 1) no error exists in solving NAE, 11) k1 F ()0 o (0)0<kos f
()8 for all ., <<x<x...s and iii) the desaturation level satisfies %, 0°<CTsat (8)9<_8°.
Then

A fof '=1f tsat,

B) ko1 ¢ sat (DO fof 1 (0)0< k2 * sat(6)9,

C) ko b0 fo F (DO ky 0%, and finally, &=k, k., —1 and k> =k, ,—1.

and £, < k"¢, then take £];°“ =k,

z=(1+k)zx,

Fig. 6 The sketch map of nonlinear item f,:,j}_I
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4 Simulation example

Here we only give an example to illustrate Theorem 1. The system adopted is y(z) —
2y(t—1)=x(t—1). Choosing N;=1, N,=N,=2,and A=10 we obtain k£, = 0. 044, and
ks =1.8449. As bk, & |k, k; |, condition 1) in Theorem 1 1s satisfied. Further, take %k, =
0. 287, and the largest k&, satisfying condition ii) in Theorem 1 is k£, = 1. 8314. This choice of
(ki1 ,k; )is the one that satisfies [ &y ,k; [CC[ by ks | and at the same time makes bk, —k; max-
tmized. The initial values are v(—1)=3,v(0)=7 and x(—1) =1, while the set-point is w=5.

s

Let £ '=1.Then f*f (@)= f(@. As shown in Figure 7,(1+k)O*<f, F (DO (1+

k,)8°. All conditions in Theorem 1 are satisfied. The simulation result in Figure 8 shows
that the system is stable.

(1. 2878, 10*sind| <1, 287 16
Assume f, () = f(0) =<sign{0) |0*sinf|, 1.287|0|< |0*sing| < 2.8314]4].
2. 83144, 0'sind | ==2. 8314 | 4|

10.0
PR ) —— 5 Y A S v
r=/<.8314x U
i : t _r.\ E
P x=1.287x,
8 O oo S T
| ’ |
! o '
TV ESRNSNSN .4 NS SN S
f i
—10. 0 . i i '=
— 10 — 5.0 0 5. 0 10,0
x

"

Fig. 7 The sketch map of nonlinear function fof !
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Fig. 8 Time responses of two-step (or input nonlinear) GPC

S Conclusion

We transform the block diagram of the closed-loop system for two-step generalized
predictive control with input nonlinearity into the static nonlinear feedback form, and uti-
lize Popov's theorem to analyze the stability property of this kind of system. The paper
gives the stability design method and illustrates the theoretical result with simulation. The
significance of the nonlinear item in the closed-loop system of TSGPC is manifold, and by
giving its variation range 1n the 2-dimensional space 1t can incorporate in varying degrees
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the various kinds of nonlinearities and uncertainties. This is very useful in real application.
The domain of attraction for TSGPC deserves further investigation. Although we
have shown how to decide (£S,£3), to determine in which state set £20*<(fo f ' — 1) (DO

<k50° can be always satisfied is also very important, This problem can be considered un-
der the state-space framework and will be discussed in another paper.
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