$20% B4 H 31 4 2 Vol. 29, No. 4
2003 £ 7 B ACTA AUTOMATICA SINICA July 2003

Restoring Turbulence-Degraded Images Based on Estimation of
Turbulence Point Spread Function Values”

ZHANG Tian-Xu HONG Han-Yu SUN Xiang-Hua SONG Zhi

(Institute for Pattern Recognition and Al , State Key Laboratory of Image Processing and Intelligent Control,
Huazhong University of Science and Technology, Wuhan 430074)
(E-mail: txzhang(@mail. hust. edu. cn, honghany@ public. wh. hb. en)

Abstract A new method is proposed for estimating the PSF(point spread tunction) values of tur-
bulence from turbulence-degraded images. Instead of previously used natural or artificial guide star
images to measure the PSF, two consecutive frames of short-exposure turbulence-degraded images
are used directly as the input. Appropriate extension are made for the images in the spatial domain
and a series of equations for calculating the PSF values are developed and chosen in the frequency
domain. In order to overcome the interference of noise, the PSF calculation is transformed into the
optimization estimation under the constraints of the PSF being non-negative and spatial smoot-
hing. The values of the PSF are estimated by minimization criteria function and then the degraded
images are restored. Experimental results show that the proposed method is highly effective with
good periormance,
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1 Introduction

Imaging of objects through atmospheric turbulence is inevitably encountered by space-
based, earth-based and plane borne optic imaging sensors working in the turbulence at-
mospheric environment such as those used in astronomical observation, satellite sensing,
precise missile guidance and so on. Owing to the existence of the atmosphere, before light
rays enter the window of an imaging sensor, the atmospheric turbulence will randomly in-
tertere with the transmission of the light wave, causing distribution of pixel intensity on
the focal plane diffused, peak value reduced, and image blurred. A lot of research has been
done to overcome the interference by atmosphere and reconstruct distorted images, and
many methods have been proposed for the restoration of turbulence-degraded i1mages.
However, none of the methods are free from limitations. For instance, Labeyrie meth-
od'’, Knox-Thompson method'® and the triple correlation method**! all require a reference
star adjacent to the object to detect the PSF. The adaptive optical method"* can be used to
correct the distortion in real-time, but complicated equipment is involved. The blind de-
convolution method"'has been proposed to estimate the intensity of an object using some
rational a priori knowledge without a reference guide star , but it excessively depends on a
priori knowledge and is mostly handled in an off-line manner-®~%.,

To quickly restore images, B. R. Frieden"> decomposed the influence of the atmos-
pheric turbulence on light wave into a series of optical turbulence units and modeled the at-
mospheric turbulence PSFE as the process of stochastic superposition of a series of disturb-
ance functions (or speckle functions). The Fourier frequency spectra of two consecutive
frames ol short-exposure images were used to set up the weights and displacements of the
“speckle functions”, to calculate the PSF . But current solutions are all based on the as-
sumption that the number of turbulence units remain unchanged and the parameters of the
basic perturbation function are not changed. In reality, such assumptions are not very et-
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fective; furthermore, the number of the turbulence units is hardly correctly estimated trom
the turbulence-degraded images.

We propose a new algorithm for recovering turbulence-degraded images based on esti-
mation of the turbulence PSF values. We look at the intluence of stochastic turbulence on
the imaging of objects from the perspective of the whole, and divide the PSF region into
excited and non-excited regions. To avoid the interterence ot noise, an optimization meth-
od to estimate the PSE values based on non-negative and smoothing constraints 1s sugges-
ted, which considerably improves the noise-resisting ability.

2 Equations for calculating the point spread function (PSF)
The 2-D image forming process can be modeled as:

g(x,y) = Jm jm oz, y)h(x,y;3s,t)dsdt + n(x,y) (1)

—

where g(x,v) represents the observed degraded image, o(x,y) the unknown original im-
age, n(z,y) the noise term and h(x,y;s,t) the blurring operator, or PSF.

For a turbulence-degraded image, the process of degradation can in general be as-
sumed to be spatially invariant-!®, that is, the blurring operator is uniform across the im-
age., Then we have h(x,yv;k,l) =h(x—Fk,y— ). By substituting it into (1), the turbu-
lence-degraded image g,{(x,v) can be expressed in a convolution form as

g.{x,y) = h,(x,y) *o(zx,y) +79,(x,y) (2)
where h,(x,y) represents the stochastic PSF affected by atmospheric turbulence, 7, (x,y)
1s assumed to be Gaussian additive white noise and the subscript n represents the sequen-
tial number of frames of tmages (n=1,2,-+-).
2.1 Constructing equations

We shall use two consecutive frames of short-exposure turbulence-degraded images
g.(xsyy)(n=1,2) of the same object to remove the blur. The two consecutively taken
frames can be considered as the degraded images obtained owing to the interference by two
stochastically distributed and relatively independent turbulencet'’. According to (2), we
perform 2-D DFT for g, (x,y) (n=1,2), respectively. There will be

Gi(u,v) = Hi (usvr)OCusv) + N1 (usv) wsv=0,1,,N—1 (3)
GyQusv) = HyCu,v)OQusv) + No(uyv) u,v=20,1,,N—1 (4)

The frequency spectrum OCu,v) of the original image i1s unknown. Move N; (u, v)
and N, (u,v) to the left and divide the Fourier frequency spectrum of (3) by that of (4)
and we have

Gl (H,TJ) _"Nl(uaf)) L H1(H5U)O(H9ﬂ) . HI(HE‘U)

Du,v) = Gy (usv) — Ny (u,v) H; (u,v)OCu,v) H,(u,v) “sv = 051,02, N—1
(5)
where
N—1 N—I1
H,(u,v) = Z Zhﬂ(x,y) expl— j2n(ux +vy)/N] n=1,2 wu,v=0,1,,N—1
= y=1(
(6)

Suppose the excited region (non-zero region) ot the turbulence PSF 4,(x,y) 1s MXM. In
most cases, M is much smaller than the dimension of the image "*™. Suppose the object re-
gion in the original image is KX C. In the turbulence-degraded image g,(x,7v), the region
actually occupied by the object 1s larger than that in the original image, 1ts area 1s (R+M—1)
X (C+M—1). The image of the scene contains the object and the background. To avoid
loss of the object energy, it should be ensured that the entire object is in the plane of the
image. Suppose the size of the turbulence-degraded image g,(x,vy) 1s WX H. It should be
guaranteed that W=R+M—1, H=C+M— 1. To {facilitate calculation and using the

FFT, we shall perform appropriate periodical extension of g,(x,y). Here, in order to fa-
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cilitate discussion, we make the extension so that it will become a square matrix of N X N.
Pertforming same periodical extension of A, (x,y) by N XN, then performing 2-D DFT, we

have
N—1 N—1

H,(u,v) ‘"‘2 Zh (xyy) expl— j2r (ux + vy)/N =

.I——O A==

i M—
Z Axsy) expl—i2x(ux +vy)/N] n=1,2

‘}.l=

Uy = 041y, N—1 (7)

Substitution of (7) into (5) yields
M—1 M—1

E Eh (xsy) expl— 12x(ux +uy)/N |
D(u,v) = =3 u,v = 0,1,"-,N—1 (8)

Zhg (xyy) exp|l— j2xCuxr + uy)/N]

Performing transposition and collation with respect to the above equation, we have

|

<

M§

—1

[h (xyy) — DCuyv)h,(x,v) | expl— j2n(uxr +vy)/N| =0 wu,v=20,1,~,N—1
(9)

M
]
<

0

&

i

Express D(u,v) with the amplitude M, (u,v) and phase angle @(u,v) :
D(u,v) = M,{u,v) exp| j27x¢Cusv)/N | (10)
(9) 1s a complex equation. Substituting (10) into (9) and expanding the real part and
Imaginary part, respectively, we obtain a series of real part equations and imaginary part

equations as follows:
M—-—1M-1 M-—1M-—-1

Z E(CO%——(ux—Fvy))h (x,y)—z Z[M (u,v)cos J\J;(?S(u,v)“ux—vy)]hz(;t:,y):O

S
<5
f—

M 1M

(sin ——(ux+vy) )h1 (::r:,y)-|—2 [Mﬂ(u,‘v)sin N(¢(u,v)—ux—vy)]hz(xay) =

0 U
U, v==0,1,,N—1 (11)
The above-mentioned (11) contains a total of 2M? unknown variables &, (x,vy) and A,
(xsy)(xy,y=1,2,, M) while in (11) there are 2N°equations. We have noticed that the
image's frequency spectra possess conjugate symmetry in the frequency domain. So, of the
2N’ equations, about half coincide. In fact, there are N°-+4 linearly independent equa-
tions, about half of 2N*. Therefore, if A, (x,y) and h,(x,v) are to be accurately solved,

it should be ensured that N2 +4>2M?, or N>/2M. In addition, in order to be able to use
the FFT, we choose N as an integer of 2 to a definite power. In short, choose N so that it

will satisfy the following three conditions: (a) N_=max (W, H), (b) N>(int)J/2M; (c)
N=2", n being a positive integer,
2.2 Transforming the equation set

(11) is in the form of Ax =0, which is a homogeneous linear equation set. In order to
obtain non-zero solution, it is necessary to transform (11) into the form of Ax=5. We can
move a certain variable which 1s called the reference variable and its corresponding coeffi-
cient from the left side to the right side of equations (11). Divide the two sides of (11) by
this variable, and we have a non-homogeneous equation set Ax =5 of order less one. Solve
this equation set and the solution obtained will be the ratios of the values of the PSFs h;
(x,v) and h,(z,y) (x,y =0,1,2,+*,M—1 ) to the reference variable. If we want to {ind
its exact solution, it is necessary to add a constraint condition. Under the condition of the
image energy kept conserved, it is obvious that the sum of the PSF values of each turbu-
lence degraded image to be equal 1. 0 can be taken as a constraint. In addition, the refer-
ence variable should be rationally chosen. Obviously, its value should not be zero, neither

Nl
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should it relatively be too small. It can be rationally assumed that the peak value of the
PSF appears in its center vicinity. Hence, we can choose the center point (x,=M/2,vy,=
M/2) variable as the reference variable. Suppose its value A;(x,,y,) is 1. 0. Then, (11)
can be transformed into the following form:

M—-1 M-—1 M—-1M-—-1
E 2 (COS‘““(M"“Z{’})))}LI (.pr) Z Z[Mn(urt’)CO (¢(H9U)“H~I‘_’Uy)jhg(.rsy)—“
;;&Eﬂ;ij?ﬂ =0 y=

— COS gir(u.r -+ Uy, )

N 0 Q

M—1 M—1 M—1M— )
D> Gsin o (ux + vy () EZ (M, Cus o) sin 57 ($Cus0)—ux—oy) Jhe (s 3) =
II =.r{; yj;:;:} =0 y=90

—-sin%—r(mg—f—vyo) wyv = 0,1, ,N—1 (12

2.3 Selection of the equations

This step 1s of crucial importance in the correct estimation of the turbulence PSF val-
ues and is the key part of the proposed algorithm. To ensure the reliability and robustness
of the solution, it is necessary to select (2M? —1) linearly independent equations from the
2N’ equations to form a invertible equation set. We propose the following method to effec-
tively select the equations.

1) First, eliminate some linearly dependent equations.

The Fourier frequency spectra possess con- =0 (0,N/2) N—1

jugate symmetry. Of the 2N? equations, in fact u=0
about half are repeated and linearly dependent.
It is our method to avert the repeated region in N/2.N2)
the frequency coordinate (u, v) from left to /2,0 =
right and from top to bottom (as shown in
Fig. 1) to select (2M* —1) linearly independent
equations,
2) Second, to ensure the stability of the N—l
solution, it is necessary to avoid the frequency Fig.1 The repeated region ot equations

domain coordinates (u,v) that make G,(u,v) (n=1,2) equal and close to zero. At the
same time, the number of conditions cond(A) should be reduced as much as possible. We
adopt the method of quasi-equal spacing (swinging in definite basic spacing) to select equa-
tions with delinitely different corresponding coellicients from the {requency coordinates uv
(shown in Fig. 1). The coelficient matrix A may have perturbation owing to interference
of noise while vector b at the right end is accurate and A is in error, which can be ex-
pressed as A+ 3A. The corresponding solution vector becomes x+¢8x. For the number of
conditions of non-singular matrix A, cond(A)= || A ]| || A7 || . The relationship between
the relative errors of the solution and the matrix coefficient is given in [ 13 ]as [ox|/
[x+ox |[<|A7' | ||8A]| =cond(A) |SA|/|A]. It shows that in order to reduce the relative
error of the solution, the number of conditions cond (A) should be as small as possible
when the relative error of the coefficient matrix A is controlled within a definite range.
Obviously, it should be guaranteed that there exist definite differences in the correspond-
ing coefficient values of the equation variables. To reduce cond (A), we select (2M* —1)
linearly independent equations from the frequency coordinates uv by using quasi-equal spacing.

3) Finally, in the presence of noise, choose as many equations in the low frequency
part as possible. In the frequency domain, the energy of the turbulence-degraded image is
mainly concentrated in the low frequency part. The values in the low frequencies are great
and rather small in the high {requency part while noise is in general distributed in the high
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frequency part and the values in the low {requencies are generally rather small. Therefore,
if we do not have sufficient a priort knowledge about noise, we should choose as many e-
quations in the low frequency part as possible to prevent the coefficient matrix A from
changing too much so that the perturbation of the coefficient matrix A will be rather small.
2.4 The calculation of the PSF values and direct method

Pick out (2M?—1) linearly independent equations from equition (12) using the meth-
od given in Section 2. 3 and make sure that the coefficient matrix is invertible and it's con-
dition number cond(A) is rather small, and then construct the equation set

Ax = b (13)

When there 1s no noise or only a little noise, n, (x,y)=0,9,(x,y) 0. Now D(u,v) =
Gy Cusv) — Ny Cuyv) |/ G Cusv) — Ny (uyv) |G Cusv) /Gy (usv). Substituting D(w, v)
into (5) and solving (13) directly, we have the ratios of PSF values of two turbulence-de-
graded images to the reference variable. Performing the normalization of the ratios {ound,
we can obtain the discrete values A, (x,y) and A,(x,y){(z,y=0,1,2,+,M—1)with nor-
malized PSF. Performing DFT for &, (x,v) and h,(x,v), respectively, we have H, (u,v)
and H,(u,v) . The frequency spectra of the original image O, («,v) can be obtained by in-
verse filtering, and performing Fourier inversion for O, (u,v) gives the restored images.

3 Optimization estimation based on non-negative and smoothing constraints

In the presence of noise, the errors involved in the turbulence PSF values found by
the direct method are too great and the effect of restoration would not be reliable. Now,
the noise terms 5, (x,y)and 5, (x,y) are unpredictable. But we can adopt the non-negative
least squares with constraints to estimate the PSF values according to the distribution
properties of the degraded images and noise spectra. Let D(u,v) =G, (u,v)/G;(u,v). The
frequency spectra N; (u,v) and N, (u,v) of noise are unknown but we have noticed that
when Gy (u,v) is much greater than N, (u,v) and G, (u#,v) 1s much greater than N;(u,v),
there is D(u,v)=~D(u,v). We use D(u,v)to estimate D(u,v). There is D(u,v)=~D(u,v)
in the low frequency part. We should choose as many equations as possible in the low fre-
quency part so that the values of the elements of the coetficient matrix of (13) will not
change too much and the perturbation will be rather small, that is, SJA=0, and there 1s Ax
~b as a whole, We shall then constrain the solution according to rational a priori knowl-

edge, and in accordance with some certain criterion, seek the optimal estimate X of x to en-

able AX to be close to b in the sense of square error. A rational constraint is that the PSF
values are greater than or equal to zero, that is, finding the minimum ior the tollowing cri-
terion function ¢(x) under non-negative constraint,

¥ =argmin®(x) = argmin(Ax —b)'(Ax —b) x=0 (14)

The criterion functionx@(x) mentioned above has not any spatial constraint. It allows
for great differences among adjacent points and is particularly sensitive to noise. To avoid
these latent problems, some penalty terms that can play the role of smoothing must be
added to the criterion function (14) according to the spatial correlation to make the differ-
ence of PSF values among the adjacent points not too great. The above-mentioned problem
can be summed up as the following problem of constraint optimization;

¥ = arg min®(x) = arg min[ (Ax —bB)"(Ax —b) + 2 > ,P.(x)] x>=0  (15)

where P,;(x) is the spatial penalty term of the ith component with respect to x, o 1S a regu-
lating parameter. P;(x) is expressed as follows using the quadratic spatial penalty function;,

P(x) = > D lwu(xy —zu)’ (16)

where w; of the four most adjacent horizontal and vertical points of the ith component x; 1s
equal to unity, the remaining being zero.
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The optimal solution vector x can be obtained by minimizing the criterion function.

After transforming the obtained solution vector ¥ into discrete values A; (z,y) and A, (x,y)
(xyy=0,1,2, *=*,M—1) and performing normalization respectively, the estimation of the
PSF values of the two turbulence-degraded images will be obtained. Performing DFT with
respect to h, (x,y) and h, (x,y), we have H, (u,v) and H,(u,v). As the degraded images
are polluted by noise, we adopt the filtering method based on the least squares and maxi-
mum smoothing criterion described in [ 12 ] to estimate the frequency spectrum O, (u,v) (n
=1,2) of the original images. Perform IDFT for O, (u,v)(n=1,2) and the restored ima-
ges can be obtained.

4 Experimental results and analysis

Based on the above-mentioned algorithms, we have developed a simulation software
system of the turbulence-degraded images and the restoring software system by program-
ming with VC6. 0 on a microprocessor (Pentium III550, 256 mega-memory). By adopting
the stochastic superposition model proposed by B. R. Frieden"*!, we have generated a se-
ries of atmospheric turbulence-degraded images with computer simulation software,

Fig. 2(a) i1s a satellite cloud image of an area of 130X 130. The two stochastically gen-
erated original PSFs are as shown in Figs. 2(b) and 2(c¢). Their excited region is 48 X 48.
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Fig. 2 (a) original image in size of 130X 130 ; (b) and (¢) two original PSFs; (d) and (e) two turbu-
lence-degraded images; (f) and (g) two estimated PSFs, respectively; (h) and (i) two images
restored from (d) and (c¢)



No.4 ZHANG Tian-Xu et al. : Restoring Turbulence-Degraded Images Based on Estimation of +== 579

The two turbulence-degraded images are shown in Figs, 2(d) and 2(e). The PSFs esti-
mated by using the direct method from the degraded images Figs. 2(d) and 2(e) are shown
in Figs. 2(1) and 2(g), which are basically in agreement with the original PSFs. The two
images restored from the two degraded images 2(d) and 2(e) are shown in Figs. 2(h) and
2(1), respectively. The good restoring etfect shows that in absence of noise or very little
noise, the direct method can restore image exactly.

The direct method is rather sensitive to noise, which will be illustrated with experi-
ments. Fig. 3(a) shows the original image, of 120X 120 pixels in size. Two frames of ima-
ges as shown in Figs. 3(d) and 3(e) are restored from two frames of degraded image 3(b)
and 3(c) without adding noise. Two images restored from two turbulence-degraded images
3(b) and 3(c) to which stochastic Gaussian white noise i1s added are shown in Figs. 3({)

and 3(g) with an SNR of 50db. With an increase of noise, the restoring effect becomes
poorer and poorer,

Fig.3 (a) original image; (b) and (¢) two turbulence-degraded images; (d) and (e) two restored
images without noise; (1) and (g) two restored images with white noise added and with SNR

50dB

Below we shall verify the effect of restoration and the reliability of the optimization al-
gorithm in the presence of noise. We shall still take Fig. 3(a) as the original image. The
two frames of turbulence-degraded image are shown in Figs. 4(a) and 4(b). The excited
zone of the PSF 1s 8 X8 and with white noise added and an SNR of 30 dB. Figs. 4(c) and
4(d) are two image restored from Figs. 4(a) and 4(b). The time spent 1s 6 sec and the re-
storing effect is fairly ideal. With Frieden's method, two restored images are shown in

Figs. 4(e) and 4(f). The time spent is 14 minutes and 42 seconds and there exist rather
many false contours.

When blurring is increased and the excited zone of PSFs 1s expanded to 13X13, two
turbulence-degraded images are generated. Add additive Gaussian noise of 40 dB and we
have images as shown in Figs. 5 (a) and 5(b). Having them restored with the optimization
algorithm we have the images shown in Figs. 5(c¢) and 5(d). The time spent is 3 minutes
and 25 seconds. It can be seen from the results of the experiments that when there exist
both blurring and rather loud noise, the optimization algorithm proposed is much better
than Frieden's method in terms of the restoring effect as it has greatly reduced the degree
of blurring, considerably reduced the false contours, and overcome the interference of
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noise, proving the reliability of the proposed algorithm.

Fig. 4 (a) and (b) two turbulence-degraded images (PSF being 8 X 8), white noise added, with

SNR 30dB;(c) and (d) two restored images using the proposed method;(e) and ({) two
restored images with Frieden method

(a) (b)

Fig.5 (a) and (b) two turbulence-degraded images (PSF being 13X 13), white noise added, with
SNR 40dB; (c¢) and (d) two images restored using the proposed method

5 Conclusions

A new algorithm for restoring turbulence-degraded images is proposed and experimen-
ted on by directly estimating the turbulence PSF values with two turbulence-degraded ima-
ges. [his algorithm has helped to avoid the practice of measuring the PSF values by mak-
ing use of available natural or artificial guide star. Comparisons with existing methods for
restoring turbulence-degraded images show that the method is faster and fairly etfective.
However, when turbulence is rather strong, the turbulence-degraded images would be ex-
tremely blurred. Although the PSF values can be accurately and quickly calculated by u-
sing the direct method, i1ts requirement on SNR is rather high. The optimization estima-
tion method is found to overcome the interference with noise, but it takes too much time.
Hence, in order to reduce the calculating workload and consumption of time, in the future

work, we intend to adopt the multi-resolution technique based on wavelet transform to re-
store turbulence-degraded images.
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