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Abstract An adaptive hybrid position/force control approach for redundantly actuated parallel
manipulators is presented. Based on the geometric properties of constraint submanifolds in parallel
manipulators, the inverse dynamics of redundantly actuated parallel manipulators can be naturally
projected to configuration subspace and constraint force subspace. Based on the projection equa-
tions, a unified and asymptotically stable adaptive hybrid position/{force control algorithm is pro-
posed. With the minimal two-norm rule, the redundancy resolution problem is solved and the
practical actuated forces are optimized. Simulation results are given to demonstrate the etfective-
ness of the proposed approach.
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1 Introduction

Force and velocity in constrained systems are objects of different physical and geomet-
ric nature, where constraint forces annihilate {ree velocities. The duality relation between
force and velocity has been applied to designing hybrid position/force controllers'’?. For
instance, Yoshikawa presented a dynamic hybrid position/force control algorithm *. Mec-
Clamroch explicitly utilized the duality relation and the constraints to decouple the dynam-
ics ol the constrained mechanical systems and developed a stable hybrid position/force con-

trol algorithm'*, Selig also used the duality relation to define two projection maps and

gave a precise geometric interpretation of the constrained dynamics'*.

In this paper, we study geometric properties of constraint submanifolds of parallel
manipulators and provide a unified geometric framework for modeling and control of them.
Using the metric and the constraint, we define two projection maps. By them, we decom-
pose the Euler-Lagrange equation of the parallel manipulator into two orthogonal compo-
nents. Subsequently, we design an adaptive hybrid position/force controller for the planar
two-degree-of-freedom parallel manipulator with redundant actuators described in | 5 | and
theoretical analysis and simulation results validate its asymptotically stability. The pro-
posed method has some attractive features; First, by decoupling the inverse dynamics, we
can design respectively controllers for different control performance. Second, by an adap-
tive control law, robustness to parametric uncertainty 1s achieved. Finally, the controller
designing and redundant actuated forces optimization are considered separately, and the

control algorithm is not complicated and is suitable for practical applications.

2 Geometry of the constraint systems
A holonomic constraint mechanical system can be modeled as follows
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H:E—-R'"™, H@ = (h@,h, (D) =0 (1)

By excluding singularities, the configuration space Q= H ' (0) of the constraint system is
m-dimension embedded submanifold in E which is called generalized coordinate space of the
constrained system'®, At each € Q, the tangent space of Q, T,Q, defines the set of free
velocities of the constrained system, which is the free velocity space. Utilizing the duality
relation between free velocities and constraint forces, the constraint force space is defined by
TQ = {fe€e TE|{fy,v) =0,Vv €& T,Q) (2)

where { f,7v) denotes the virtual work produced by generalized forces f acting on general-

ized velocity v.

1

Let T= > @"M(0)0 be the kinetic energy of the mechanical system. It endows T,E

with a natural Riemannian metric M. Using this metric, the orthogonal complement of
T,Q can be defined as

TR = {vi € TeE |{v,»vudu = viMu, =0,V v, € TQ} (3)
and the cotangent space T  Q consists of covectors which annihilate vectors in T,Q-
T;Q={f€ TE|{fyv)=0,YVv €& T,Q} (4

The above discussion shows that a holonomically constrained system is naturally associated
with two subspaces T,Q+ and T, Q. If the system is further endowed with a kinetic energy
metric M, and then two additional subspaces T,Q* and T,Q can be defined. These sub-
spaces have obvious relations with generalized velocity space and generalized force space as
follows

TWvE = T,QP T,Q+ T,E=T,Q3P T,Q" (9)
Using the metric M, we can define the mapping
M. T,E >T,E. (Mwvl,v2)=viMv, v ,v, € T,E (6)

As M is positive definite, M’ has an inverse, denoted by M*. It is not difficult to see that
the matrix representation of M’ is simply M and that of M* is M. In addition, these map-
pings satisiy

M(T,Q) = T,Q M (T;Qt) = T,Q+ (7)
From (1), we get the push forward mapping and pull back mapping of H respectively as
fOHOWS:

H, . T,E—>TyhgeR"™ H* :TgsR"™ —> 1T;FE (8)
It 1s obvious that the null space of H.
TE(T,Q) H- T/ o RP=m(0) satisftes N(H. )=T,Q. Thus, H, identt
| fies TyQ+ with Ty, R*™™ and H™ identr
Mxr PPy ftes Th R*™™ wit}} T;. Q. TFigure 1
‘ ) shows the commutative diagram for these
! | subspaces.
T,ET,Q H. e TR (0 Lemma 1. Assume mapping [— P, is
given by
Fig. 1 Commutative diagram for dififerent subspaces I—P, = H*"(H.MxH*)'H, M«

(9)
Then mappings I— P, and P_ are the projection mappings from T* E to T, Q+ and T, Q,
respectively.
Proof. Given [, & T, Q, we have M¥* (1) & T,Q=N(H, ), and (I—P_)(f,)=0. On
the other hand, for f, € T; Q+, there exists A& R" ™ such that f,=H" A and
(I—-P)Hfi =H " (H.MtH*)"H.M*H MH*"A=H")A= f,
This shows that I— P, is the projection mapping from T* E to T, Q~. In a similar man-
ner, we know that mapping P, is the projection mapping to T, Q.
For a parallel mechanical system, the inverse dynamics equations are written*J by
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M6 +C(0.0) 0+ N =1+AA (10)
where M denotes the inertia matrix , C centrifugal and Coriolis forces and N the gravita-
tional force. The Lagrange multipliers 4 represent the magnitude of constraint forces,
whose directions are defined by A=0H/98".

Ditferentiating the constraint equation (1) and eliminating second differential terms
from (10) we have

A= (AM AT (-~ A0+ AM'(CO + N — 1)) (11)
Substituting (11) back to (10) yields
MO + AT(AM'AT)"' A+ P,CO + PN = Pt (12)
where
P =IT—-—A"(AM'AYH)7'AM™ (13)
Thus, we write the dynamics equation (11) in a simple form
MO +AT(AM 'AT)'A§ = P.M§ = Mb (14)
Defining C=P,C, N=P_N and 1 =P_r. we have
M@ +C(0,0)00+N=71 (15)

Comparing equations (15) and (10), It is obvious that the right hand side of (15) does not
include the constraint forces term. That is by the projection mapping P,. T E—~T*Q, the
inverse dynamics of the parallel manipulator is projected to the cotangent space of its con-
figuration space. Defining H, =A,H" =AM =M ,Mx=M""', it is seen that (13) is con-
sistent with the equation (9). In order to project the dynamics to the constraint force
space, constituting another project mapping (I—P,): T"E—-T*Q" according to (9), we
have

(I—P,)(M6 +C8+N)=UT—P,)r+ATA (16)
To summarize, we decouple the dynamics of parallel mechanical systems to position space
and constraint force space respectively by (15) and (16).

3 Adaptive hybrid control algorithm
Considering the planar two-degree-of-freedom parallel manipulator shown in Figure 2.

We denote actuated joints 0=1[6,,0,]°, the redundant actuated joint &5, and the general-
ized coordinates 0=[0,.9, 0, +%,,0:,%s |. Let 9=¢(5) be the embedded mapping from Q to

E, and J the corresponding Jacobian matrix, we have

0—J0 6—JoJO (17)
Substituting (17) to (10) yields

MJO +MJo+C(yp(8),J6)J0 +N =1+ A"A (18)
According to the previous discussion, we have the decoupled dynamics by the project map-
ping P, as follows

PMJO +P.(CO+N) = Pz (19)
(I—P)OXMJO + (U —P)H)(C0+N) = UH—P)H)r+A"} (20)

where C;(6,0)=C(y(0),J0)J+M]J .

Lemma 2. Let M=J"MJ and C;,=J"'C,. We have

1> The matrix M is symmetric, positive definite, and both M and M 'are uniformly
bounded functions.

2) The matrix M—2C; is skew symmetric.

Define the sliding surface as follows""
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FZE_V“Agef:ém+A1€m__A2€f (21)

where v=0,—Ae,, ¢,—0—80,, éfZAfef—i—ATl—fd and e, (0) =e; . 0, ,and f, represent
the desired trajectory of motion and constraint forces, respectively. A; and A, are tunable
positive definite matrices and A, 1s a stable matrix. The adaptive controller consists of a

motion control law and a force control law given by
1

Pt =MJv+Cv- ZN—J"der (22)
(I— Pt = (MJA, — L) 6, + (C1A, + A e, + %N—-»fd (23)

where k, is a tunable diagonal gain matrix and M, C and N are the estimates of correspond-
ing matrices respectively. Substitute the above equations back to (18), and we have

MJO +C0-+N=MJy +Civ+N—kor+MJA, é,+CiAse, (24)
let Mf: (MIf_!_ClV_I_N"““kdr)+(MIAzéf+C1A2€f) (25)
and eliminate M, from the both sides of (24), rewrite (24) as
MJF +Cr+J kg =M —M (JV +Asé;) +(C, — O (v+ Aye,) + (N—N) =

Y(6,0,0.,08,,v,V,e,,é,)p (26)
where p=p— p. Multiply both sides of the above equation by J* and let Y=J"Y. We have
M#+Cir+knr =Y(0,0,0,,0,,v,%,e,,6,)p (27)

The parameter adaptation law is chosen as
p=—TI"Y"r (28)

where I' 1s a symmetric gain matrix.

Theorem 1. Consider the parallel manipulator described by (18). Using the control
laws (22)-(23) and the parameter adaptation law (28), the closed-loop system 1s asymp-
totically stable.

Proof. Consider a Lyapunov function candidate
1

e

1

V = —Z—rTl\—lr | ;ETIP | % e.P e, 5 e;P;e; (29)

where P, and P, satisfy the following equations, respectively,
P A, +A’1FP1 — Ql (30)
PzAf _|"A};Pg —‘_*_"‘Qg (31)

In (30) and (31), O, and Q, are positive-definite matrices. Differentiating (29) and accord-
ing to Lemma 2 we have

. T 1
V rkdr 9

We denote the stiffness matrix of the parallel manipulator by K, and the constraint
forces are just strain forces produced due to the departure from the equilibrium position ot
the end-effector, which are given by

f=A"A=K®—6) (33)
Thus, we have | f(8)— f.(8.) | = IIJ_TK(E*—ge)“J_TK(Ed*‘ae) | <|J K| ”5—54 | =
|J7°K ] | e..].
B B 1 B 1 B .
et a1 = Amin (Ka) s a2 = Apin (“‘2‘Q1 ) s A3 = Amin (?Qz) and b, = “Pl ” y by = UPlAz “ -+

|J K| |P,||. We rewrite the (33) as
b =—a|r|]*—ale.|" —as|e | +blr| e+ b€l el (34)

According to [ 9], if O, and Q, are properly chosen, we can assure that ¥ is negative semi-
definite. Theretore, the theorem holds.

€$Q1€m+€$P1A2€f+e$Plr éé}Qgef‘f‘E}Pz(ATl — fa) (32)
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4 Optimization of redundantly actuated forces

From (22) and (23), we get the actuated forces in T, Q€& R*. In order to obtain each
real actuated force, we need project these forces from Ty Q€ R* to J, € R*. Due to existing
of redundant actuators, this projection mapping is not unique, so these forces must be dis-
tributed onto each actuator of the manipulator according to some optimization rules.

Let T = (11 973 sx'-’.'5)T & R ai’m - [ﬁl s P3 !PEJ - R (35)
where p.,1=1,3,5 is the ith column of P,. We have
t=P1t =Pt T;Q (36)

Assume 7, € N(P,) and 1, is a solution such that P,t,=17. Then actuated forces are given

by

s W

T — ‘?1 +- 7’;0 (37)
Solve the tollowing optimization problem
min |7, + 77 | (38)
Y
and we get the optimal solution when y= — A, A;
<fﬂ AR i . Thus we have realized minimal torque B
<T0!T0>

position control on the planar 2-DOF parallel
manipulator shown in Figure 2.

5 Simulation

Assume the desired constraint forces f; =0
and the desired motion trajectory described by
fi.=110. 2sin(5¢) and &,, =21+ 0. 2sin(8¢).
The sampling interval of the controller is taken
as 10ms. For validating the robustness of the
control algorithm we add 10% error in the iner-
tia matrix and quality of each statf. Figure 3 1s  Fig.2 The planar two-degree-of-freedom
the tracking results of the joint # in Cartesian parallel manipulator
space. Figure 4 shows the tracking results of the constraint force. These results show that
both position tracking error and force error are small, and the stability of the controller is
satisfactory.
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Fig. 3 Tracking results of joint 4, Fig. 4 Tracking results of constraint forces

(Dotted line .desired values;real line.measure values)

6 Conclusions
In this paper we decoupled the inverse dynamics of parallel manipulators into position
space and constraint {force space based on the geometric properties of constraint submani-
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fold. A nonlinear adaptive hybrid position/force control algorithm has been proposed for
the planar two-degree-of-freedom parallel manipulator. We have also realized minimal joint

torque position control on the manipulator. The simulation results have validated the ef-
fectiveness of the control algorithm proposed.
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