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Abstract This paper presents an adaptive robust control scheme for a discrete-time plant subject

to both coprime factor perturbations and unknown external disturbances. Firstly, we establish
nice continuity properties for ¢, optimization resulting ffom optimal robust control of discrete time

uncertain systems with coprime factor perturbations. Then, we propose a robust parameter esti-
mate algorithm with variant dead zone. Finally, combining the proposed parameter estimate algo-
rithm with optimal ¢, robust control, we present a novel adaptive robust control scheme for plants
with coprime factor perturbations based on the certainty equivalence principle. With the continuity
properties of ¢, optimization established in this paper, the proposed adaptive scheme is shown to be
uniformly stable. A posterior computable condition for the stability of the adaptive scheme 1s also
provided in this paper.

Key words Coprime factor perturbations plant, continuity property, optimal ¢, robust control, a-
daptive control

1 Introduction

The ¢, design methodology, formulated in the mid-80s, is concerned with the feed-
back controller that reduces the effect of uncertainty on the system!, If this uncertainty is
in the input/output, that is, disturbances are persistent bounded but unknown, ¢, control-
lers can be designed to minimize the amplitude of the error signal. If the uncertainty is in
the plant, that is, additive or coprime factor perturbations, ¢, controllers can be designed
to robustly stabilize the plant. Hence, ¢, design is viewed as a practical robustness design
methodology" ',

Continuity properties of feedback design are of importance in studies of well-posedness
and robustness of feedback control, especially in understanding interactions between mod-
eling and feedback action, and in the development of the theory of adaptive control. From
this point, continuity is an essential problem of ¢, design methodology. In [ 3| continuity
properties of the problem for optimal rejection of bounded persistent disturbances were
firstly studied and /¢, optimal design was proved to be as a continuous mapping from the
plant to the optimal closed loop solution if the plant has no zeros on the unit circle. In
| 4,5], these conclusions were extended to any single block ¢; optimization problem. How-
ever, the studies of continuity properties of multi-block ¢, optimization have not been re-
ported so far. In this paper,using properties of the graph topology, the ¢, suboptimal ro-
bust control design for the plants with coprime factor perturbations i1s shown to be uni-
formly continuous whenever the set of plants 1s restricted to a compact set.

On the basis of continuity properties of ¢; optimization design established in this pa-
per, we also investigates the problem of adaptive robust control for a plant with coprime
factor perturbations and unknown disturbances. This work is an extension of [ 3] and [ 6 ].
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The plant under consideration in | 3 | 1s subject to unknown disturbances, and the plant in
| 6] is subject to unknown disturbances as well as perturbations. The results about the a-
daptive robust control obtained in this paper is similar to that of [ 7], the main differences
being that the plant in this paper 1s a discrete-time system and the characterization of un-
certainty in the plant is more typical.

2 Preliminaries
The notations used throughout this paper are as follows:

0

|2] = max|z(D ], b = (z: ]z <oob, [zl = D] 2],

=0

¢ = {I"IHI < 0O}, ¢ = (T € loo |£im:1:(k) =013 2= EI(i)Zi.
e i=0

x and x can be viewed as the same where no confusion occurs.
Let I’ denote the space of all linear bounded and causal maps form 4. to Z... Given

any G& 'y and £ € ¢7, we detine (Gx) (n) = zﬂjgﬂ,jx (;), n=0, where g,.; € R. Then, the
=0

induced norm of G is given by |Gl Py sup 2. ' g..;|. Denote I'rv as the subspace of I'iy

n j=0
consisting of the time invariant maps. This space is isomorphic to ¢;.

Definition 1'*', Operator A € I'rv is called slowly time-varying if there exists a con-
stant ¥, such that |A,—A_|<y4, Vi,z. This is denoted by A, € STV (y,).

(Given operator g€ /4, , the integral time absolute error (ITAE) is defined as ITAE (G) = i f
k=10

i@(z) , and it follows that ITAE(G)=|G"|,.

[ g(B)|. Let G' ()=

3 Optimal robust stabilizing controller for coprime factor perturbations
Consider the class of uncertainty SISO discrete-time systems described by

((A+A00v)() = ((B4+Ag)uw) (1) +d(¢) (1)
Where AaBEFTI.

We assume that A(z) and B(2) are coprime in ['ry, that is, no common zeros in the
disk |z|<C1l; As» Ag are unknown, possibly are time-varying or nonlinear bounded opera-
tors, and are assumed to satisfy || (As Ap) |1 <<d; for some d,>0; d(t) is a unknown dis-
turbance satisfying sup | d(z) | <d..

4

Consider the feedback system depicted in Fig. 1, where G, = BA ! is the nominal

model of the plant. The set of all stabilizing compensators of G, can be parameterized in

the form*®’

S(Gy) = {(C=(X+QA) Y —-QB) Qe A, Y—QB # 0} (2)
where XB+YA =1, X, Y& TI.

Fig.1 The feedback system

The problem of optimal stability robustness in the presence of coprime factor pertur-
bations can be reduced to the following tow-block ¢, optimization problem" *** .
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o G> . Y — QB

p= o (wa) = inf (X—I—QA) 1 (3)
where G* and G* are the maps from the disturbance d to the output y and to the control
u, respectively, Then, it follows from Theorem 3.1 in [ 10| that the largest stability mar-
gin defined as the maximum [[(As Agp) | such that the feedback system remains stable is e-

qual to i‘
The two-block ¢, optimization problem (3) can be rewritten as-'"
Y K,
p = it (x) (KZ) | (4
2 X1 K1 — |
where S= (K& /"' | (A B)( )-—O>_
KZ /

In[ 1], the optimization problem(4) is shown to be equivalent to an infinite dimen-
sional linear programming, which may not have a finite dimensional solution. This prob-
lem can be solved by FMV method. Specifically, if § is the truncated order, then the cor-
responding suboptimization problem is rewritten as the following problem.

. Y Ko\
5 _
o =min) ()= ()] (5)
where S? = (K€ S| (Y—K,) and (X—K,) are polynomials of degree<(s}. There always
exists a sufficiently large & such that S? is non-empty since X and Y are polynomials. In the

sequel we always take >>max{deg(Y),deg(X)}. It is known from [ 1] that problem (5)
is equivalent to a finite dimensional LP., Let (K{y K, )' be the optimal solution of (5);

X K2 def]\rHr
Y—K: M*’

then the suboptimal robust stabilizing controller indexed by § is C*

4 Analysis of continuity properties of the two-block ¢, design

Consider a system model described by G=BA™', where A, BE€ [y are coprime and
AC(0)50. According to | 9], the graph of G is given by G5 = é . Let CF denote the set
of the graphs of all plants G=BA™! and be equipped with the standard graph topology'*-
induced over ¢... Let G;=B;A;,”', C; =N (M) ', i=0,1, - denote a sequence of
plants and their corresponding two-block ¢, optimization design solutions, respectively.
We may state the continuity problem as: does G¢* approach G¢ as Gp, >Gp tin CF? We
will study this problem in the followings.

Lemma 172 G, -G in CF if and only if A,~A, and B;—B in /,.

Lemma 2 *2%) Suppose {A;YC/¢, and {B,)C/¢,. If A,—~A and B,—~B in ¢,, then
there exist X;, Y;, X, Y&/, such that X;B,;+Y,A,=1 and XB+YA =1, respectively, and
X,—>X, Y,—Y in /¢, space.

Lemma 3"''Y. Let M be a subspace in a real normed linear space X. Let 2 € X* , and
let d denote its distance from M*. Then

d= min |z* —m" |= sup{x,zx”*),
m” GM‘L ¢ BM
where the minimum is achieved for some m; € M-,

Lemma 4. Suppose u; and y are the corresponding optimal values of problem (4) for
G: and Gy, respectively. If Gg —Gg in CF, then p,—p.

The proof is omitted due to the limitation of space.

As mentioned above, the general two-block ¢, optimal design problem may not have a
finite dimensional solution. This might lead to the discontinuity of the optimal solution on
system parameters, For this reason, we show alternatively that for a suitable truncated or-
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der ¢, the corresponding suboptimal value x° is continuous.

Lemma 5, Given truncated degree 6—1, i GGI_—*GGG in CF, then #‘f—lﬂw‘?”l.

The proof is omitted due to the limitation of space.

Theorem 1, Suppose that for given §, suboptimal problem (5) has a unique solution
for all 7, and denote the corresponding suboptimal controllers by (C } and Cy. If Gg —
Gg, » then Ger —>Ger in CF.

Proof. Let GC,-* = (M N ', Ger = (M; Ng)'. From Lemma 1, to prove the a-
,—>0 and | N; —N¢ |, —=0. Since M and

N are polynomials whose degrees not higher than 8§, and since the bounded closed set in

bove theorem we need only show |M; —M;

finite dimensional space is compact, it follows that the sequence {(M; N/ )'} has a
convergent subsequence, denoted by { (M; N¢ Y1, Let lim(M: N, Yi=M; NJ)*.

o— 0
(M

i

=1, there-
N; ’

Then it follows from the constraint set of problem(5) that (A;, B, )X

M rM.-:: ﬁ
fore, (A B)X(Ni )=£im(AI-k B, )X INT
0 e ik

feasible solution of (5). Also, from Lemma 5 we have lim | (M; N YT =

bh—w o

| (M;  NgHT|, =43 then (M; N¢g )7 is a solution to problem (5). It results from the
uniqueness assumption that (M; N:H)T=(M; NZ)T. This claims that all the cluster
points of {(M; N;)'} are the same and equal to (M; N;)', hence,
| (M7 N HYT™—(M; N¢)T|,—>0, that is, [M; —M; |, >0 and [N —Ng |, —>0.
This completes the proof.

Remark 1, The condition that problem (5) has a unique solution is generic. It 1s well
known that (5) 1s equivalent to a LP. Geometrically, the nonuniqueness ot the solution of
I.P is due to the fact that an active surface of the boundary of the feasible region lies on the
hyperplane defined by the objective function. It is clear that this situation is nongeneric
since an arbitrarily small perturbation in the plant parameters will remove this situation.

Let o= u° — 4 denote the deviation of suboptimal value from the optimal value. Tt
should be pointed out that the FMV method gives no information about the relation be-
tween p and §. The following lemma shows that for any given p>> 0, there is a uniform
bound on the degree of suboptimal solutions of any convergent sequence of plants such that
their deviation of suboptimal value from the optimal one 1s bounded by p.

Lemma 6. If in CF, G; —Gg, » then for any given p>>0, there exits a truncation ¢

—= 1. This means that (1\70* NJ Y'is a

such that “uf* — u; | <<p for all 7.

The proof is omitted due to the limitation of space.

Furthermore, in order to apply ¢, design methodology to adaptive control, 1t 1s desira-
ble to prove that the two-block ¢, optimization design is uniformly continuous with respect
to certain restricted set of plants. To do so, we deline a parameter set of plants, and de-
note it by PS. Assume that the set PS is a compact and convex set such that plants whose
parameters in PS have no common zeros in the disk |2z |=<{1, and that the corresponding
FMV formulation has a unique solution for a suitable given truncation.

Theorem 2. Denote by C,(G) the suboptimal controller corresponding to plant G and
1’ (G) the corresponding suboptimal value; denote by Fps the set of all plants with parame-

ters in the set PS., Then the set of all suboptimal controllers C.(G) for all GE Fps has the
following properties: 1) given any p>> 0, there exists §" such that ]‘uﬁ* (G) — u(G) | S,

for all GE Fpss 2) Cy (G) is uniformly continuous on Fps.
Proof. It is clear from Lemma 6 that given p>0 and G, € Fps, there exist § and e=>0
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such that |4’ (G) —u(G) | <p for any GE B(G,,¢e), where B(G,,e) denotes the open ball
in Fps with center at G, and radius of e. Such balls provide an open covering of Fps. By

compactness of Fps, there exists a subcover of Fps. By taking 8 to be the largest of the §

corresponding to this finite subcover, \g“‘\* (G) —u(G) | <p for all G& Fps. Property 1)
follows.

By Theorem 1, for §* given above, Cs+ (G) is continuous at GE Fps. It results from

compactness of Fps that Cs;+ (G) 1s uniformly continuous on Fps. This completes the
proof.

5 Adaptive robust control scheme

In this section, we demonstrate an application of the results developed in previous sec-
tions to adaptive robust control. We will consider the system described by (1) whose pa-
rameters are unknown, and make the following assumptions:

Assumption 1, The degree of the model n=max{n,,n,} 1s known a prior.

Assumption 2, The plant parameter of the model lies in the compact convex set PS
(introduced in section 4) which is known a priori.

Assumption 3. max|d(#) |<{8,, |A4l1<X8,, where d and d, are known.

Equation (1) can be rewritten as:

yv(t) = ¢(t—1)"6, + (—Asy) (2) + (Agu) (1) + d () (8)
where GQEPSa 9;)5:("_61(1)9"'9_“@(?31)5b(1)5'"9b(ﬂ2))9 95(t—1)T:(y(t“—1),'",y(t“'—
) su(t—1) o yu(t—ny)). Let

dy(t) = ” (Ax AB)”1 max ( {y(‘r) } ’ ‘u(r) }) (9)

Ot

5.1 'The adaptive scheme
It should be noted in (8) that coprime factor perturbations will cause uncertainty in

addition to disturbance d(¢). In the followings we will present a robust projection algo-
rithm with dead zone.

9(t) = projection of p(¢) on PS (10)

p(t — D¢t —1) . aNTar. 1y

where ¢>0. Denote by e(2) =vy(t) —¢(z—1)'0(z—1) the estimate error, and take

p(t) = 0t — 1)

(e(t) | —2(d, () +d) -
- =1 Tew] 0 @I>2LOFD (12)
0, Otherwise
Lemma 7. For the algorithm (10)~(12) when (8) and Assumptions 1~3, it follows

that.
D 6 —6, |<<[|6Ct—1)—86, | <] 6C0)—6, ||
C Nlle | —20d () +d) ]
2) }Jﬂz§1 cH+o(t—1) 1 é(t—1)
) lim[]e(t) I_—-Z(da(z)%»d)]z
oo T PG—1) TP (t—1)
b) lim|8()—6(:—1) | =0.

o L0

Proof. It results from [ 13 ] that the convergent properties of the algorithm will be im-
proved by constraining 8(¢) to remain within the region of PS. Thus, we need only to
prove the properties in the non-constrained case. Taking §(¢t) = p(t) and subtracting 6,

. e A () =0t —1)4 p(t—Dp(t—1) 1 By — _
from both side of (11) give () =0(t—1) c—!—qf’(t—-l)qu’(t——l)e(o with § (1) =0(t) —0,.

Letting w(2) = (— Axy) () + (Agu) (¢t) +d (¢), and using (12), we have [4(2)[|* <<

< co, which implies

=0, and




No. 4 LI Sheng-Ping et al. ; Optimal ﬁl Robust Control for Plants with Coprime Factor--- 555

”ﬁé(t*’l)uz | 2y(t—1)€(t)w(t)*—277_(t'—T1)€(t)2—|"77(t—1)2€(t)2
ct+¢(t—1) " d(z—1)

+d), by noting that 0<xp(r—1)<T1, we get
~ ; ~ . Llel) | —2Wda(e) +d) ]2 | w(t) |— le(t)!:l
61 <1GG—1 1 doO+ D12 e

[ e(e) | —20d () +d)

c+-¢(t—1)"¢(r—1)
When [e(2) | <<2(d, () +d), it follows that [|[§(2) | = ||§(t“1) |. It is clear that { [|8(2) ]}

1S a non-increasing sequence. 1 his establishes 1).
Summing both sides of (11) with respect to ¢, we obtain 2). Then a) follows since
[e(e) | —2(d () +d) |
cto(t— 1) d(z—1)

follows form(11)that 8(¢) —9(t—1) =

n(t—1)*¢G—1)"¢(z—1) e ()2 < [ e(t) | —2(dy(t)+d) ]’
[c+é(t—1) ¢(z—1) |° T et e— DTt —1)
This completes the proolf.
Suppose G,—; =B, { A, is the system model generated by an estimate procedure de-
scribed above at time ¢, and the input/output sequences are related by
Aciy(t) = Byu(p) +e(1) (14
where e(#) is the estimate error.
Suppose the controller is given by
Mu(t) = N, (r— y) () (15)
Combining parameter estimation and ¢- optimal control design gives the following indirect
adaptive scheme.
1) Estimate A,, B, using algorithm (10)~(12);
2) Select a suitable truncated order and compute M, and N, via solving suboptimizaton
(5);
3) Compute and implement control
Mu(t) = NG—y@), e(t) = y()—¢(t—1)"6(t—1);
4) Back to 1).
5.2 Analysis of global stability and robustness of the adaptive system
Lemma 8. Suppose sequences {d.(¢£)}, {e(z)} and {$(t—1)} satisfy the following
conditions:

. When |e(2) | >2(d, ()

lo(t— 1)) (13)

s a non-negative sequence. 10 establish b),let 8(z) =p(2). It

Then b) follows from a).

[Je()| —2(d, () +d) ]

R TR L D

2) There exist constants 0<{¢; <(oo, and 0<(c¢, <{oe such that |o(2)||<{c;, +c; max
e(7) | ;

3) There exist constants 0<_r;, <oco, and 0<lr, <%, such that d, () <<r, + 1 522
e(D) |.

Then, sequences {e(z)} and {$(z—1)} are bounded.

Proof., 1f sequence {e(z)} 1s bounded, then condition 2) implies that sequence
{¢(t—1) } is bounded. Now assume that {e¢(¢)} is unbounded; there exists a subsequence
{e(t;)} such that lim |e(z,) | =0, and |e(®) | << |e(#) | as t<t;,. Then it follows from

f—-00

conditions 2) and 3) that there is an integer N such that |¢() |<ei+cp le() |y dy(2p)
<r +r, |e(t,) | whenever £>N. Thus, |e(t,) | —2(d\(t,)+d)=(1—2r,) e(t,) | —2(d

+r;). Since {e(#;,)} 1s unbounded and 0<r2<%, le(2,) | —2(da () +d) = (1 —2r,)
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le(2,) | —2(d~+r,)>0 when N is large enough. Therefore, we have
(e | =20, ) +dF _ [A—2r) el | —2d+rD Tt
c+¢t, — D e, — 1)  — ¢+ ¢t — 1) (2, — 1) ~
[((1—2r) |e(ty) |—2(d +r) T
c+ [+ |elt)]| ] '

It follows from lim |e(z,) | =oo that

e e
 [leG) 1—20d, () + TP . (1 —28,)°
=
im c+ ¢, — DT — 1) T 3
which contradicts condition 1) in the lemma. The lemma follows.
Theorem 3. Suppose the plant described by (1) satisties Assumptions 1~3, and that

>0,

. . . - G .
the adaptive system depicted by Fig. 2 satisties sup (G“E ) ég— , Where, 0<r, <—%-, G
4 t 1 1

and G?° are transfer functions from e to u and y at time ¢, respectively. Then sequences
{e(t)}y {u(t)} and {y(¢)} are bounded.

To prove this theorem we need the following theorem.

Theorem 4'*!, Given a time-varying closed loop system composed of CE I'y and GE

I'rv» denote by G,=N,M: ! the estimate model, C,=B,A! the controller desighed on the

basis of the estimate model, T,=M,A,+ N,B, the corresponding closed loop polynomial for
each time instant ¢, and assume the following

1) There exist positive ¥4 and Y5, such that A,€STV(y,4), and B,€ STV (y5);

2) There exist positive ¥y and ¥y such that M, & STV (yy), and N, &€ STV (yn);

3) The ¢, normof A,, B,, M,, N,, N, and ITAEFE e;;4 are uniformly bounded in ¢z, and
from assumption (1) this also implies that there exists ¥+ such that T, & STV (yr);

4) The inverse T, ' and ITAE e;4 are uniformly bounded.

Then, there exists a nonzero constant ¥ such that if Y4, ¥y Yum» YN 7Y, then the
time-varying system 1s internally stable.

The proof of theorem 3, First, we show that the closed loop system in Fig. 2 i1s inter-
nally stable. To do so, it is enough to verify the assumptions in Theorem 4. Since
|A,— A <0 —0G—D |, |B.—B- [|<[0()—6G:—1 |, and from property b) in
Lemma 7, it 1s clear that Assumption 1 is satisfied.

[

C B, A >

Y P P kiniia N T

Fig. 2 The adaptive system

The ¢, optimization design procedure induces the f{ollowing map D:¢' X ¢' =7 X7,
D(B,A)=(N,M). From Assumption 2, PS is compact. It follows from Theorem 2 that
the tunction D is uniformly continuous on PS, that is, given ¢ >0, there exists >0, and
if |A,—A,,||<<é and |B,—B,.,|| <& then |M,—M,_,|<e and | N,—N,-; | <<e. From
property b) in Lemma 7, we have |A,—A,—,|| <8 and |B,—B.—, | <&, as ¢ is large e-
nough. This implies that Assumptton 2 is satisfied.

From property 1) in Lemma 7 and Assumption 1, [|8(z) |, is bounded; furthermore,
since PS is compact, [[8(¢) ], is uniformly bounded in ¢, that is, |A.|: and | B, | are uni-
tormly bounded. Since the number of the degrees of 4(z) is not larger than 2n+1, ITAFE
(A,) and ITAE(B,) are uniformly bounded in . According to Theorem 2, it follows from
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Assumption 2 that the controller is uniformly continuous with respect to the plant model,
implying that | M, |, and | N, |, is uniformly bounded in ¢, From Theorem 2, for a given p,
the number of the degrees of suboptimal controller 1s uniformly bounded on PS. Combi-
ning the above, it follows that ITAE(M,) and ITAE(N,) are uniformly bounded in z,
that 1s, Assumption 3 is satistied.
. N, X,—K; . o
From the controller C,=—=——-= obtained at time instant ¢, the closed loop pol-
M, Y, —K;

ynomial T =MA +N,B,=1, which implies that Assumption 4 is satistied.

Secondly, we show that the estimate error e¢(z) is bounded for all time instants ¢’s.
Since, the closed loop system is internally stable by Theorem 4, it follows that there exist con-

stants k£, =0 and &, >0 such that | y(¢) | <<k, +k, max | e(r) | and |u(z) | <k, +k;max|e(r) |.

0 < s < o
This implies that there exist constants 0<{¢; < oo and 0<C¢,< oo such that | go(t)\"écl —+c

max | e(7) |. It follows from (9) that

S,
d,(t) <d, max{|y()|, |u(®)|}<{d, sup{max{[|G*|., |G*|,}}max]|e(r)|<C
LSS o T O st O st
- (ve
di sup ;, max [ e(t) [12 & max‘e(r) [
LG Sl o 0 o<t

. L Lle | —20d () +d) P
By property a) in Lemma 7, we obtain E1_1’.1;‘12 e —1)6(—1)

Lemma 8, it follows that {e(z)} and {$(z—1)} are bounded sequences. This completes
the prool.

In the following, we discuss the robustness of the adaptive scheme., From Theorem
3, if the plant satisties Assumptions 1~~3, then the unmodeled dynamics permitted by the

= (. According to

. Gy I . .
adaptive system are d;<.r, | sup ( I ) . In the adaptive scheme, the controller is de-

t Gfg 1] -

. , o Y Gy° L
signed on the basis of two-block /4, optimization, which implies that sup (G;) 1S mini-
r ! 1

mal. Therefore, under Assumptions 1~~3, the ¢, optimization is the best one to be applied
to design controller for adaptive system. Combining (10) and Lemma 8, 1t is clear that r,
becomes larger as the estimate error gets smaller, This claims that the robustness ot adap-
tive control system can be improved by decreasing the estimate error.

6 Conclusions

This paper has studied the continuity properties of the optimal design of BIBO stabili-
ty robustness for discrete time systems in the presence of coprime factor perturbations. It
has been shown that the ¢, suboptimal design for the plants with coprime factor perturba-
tions is continuous in terms of a map from the plant model to the suboptimal controller pa-
rameter. Furthermore, the ¢; suboptimal design is shown to be uniformly continuous as
long as the set of plants is restricted tc a compact set. On the basis of the continuity of ¢,
optimization, an adaptive robust control scheme is proposed when a discrete-time plant is
subject to both coprime factor perturbations and unknown external disturbances. The
scheme i1s shown to have the optimal robust stability under certain conditions. A posterior
computable condition for the stability of the adaptive scheme is also provided.
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